The goal of education is to cultivate learner autonomy. Studies in metacognition suggest that the ideal way to accomplish this is through metacognitive strategy training. Research also indicates that effective trainin...The goal of education is to cultivate learner autonomy. Studies in metacognition suggest that the ideal way to accomplish this is through metacognitive strategy training. Research also indicates that effective training programs depend on monitoring. To cultivate self-regulation or learner autonomy, it is necessary to exert external monitoring at the beginning, and gradually reduce external supervision as the students become more autonomous. The present study argues for cooperative group learning and regular evaluation as the main monitoring strategies. A semester long study indicates that cooperative group learning, besides being valuable in cultivating social relationship, and fostering cooperation and learner autonomy, can also serve as a good monitoring strategy in metacognitive strategy training. Regular evaluation, when it is progress- oriented and learner-centered, and conducted at proper times, will also provide valuable information for students to check, evaluate and adjust their learning. Self-questioning sheets and learner portfolios are also useful techniques in monitoring students' learning.展开更多
The integration of communications,sensing and computing(I-CSC)has significant applications in vehicular ad hoc networks(VANETs).A roadside unit(RSU)plays an important role in I-CSC by performing functions such as info...The integration of communications,sensing and computing(I-CSC)has significant applications in vehicular ad hoc networks(VANETs).A roadside unit(RSU)plays an important role in I-CSC by performing functions such as information transmission and edge computing in vehicular communication.Due to the constraints of limited resources,RSU cannot achieve full coverage and deploying RSUs at key cluster heads of hierarchical structures of road networks is an effective management method.However,direct extracting the hierarchical structures for the resource allocation in VANETs is an open issue.In this paper,we proposed a network-based renormalization method based on information flow and geographical location to hierarchically deploy the RSU on the road networks.The renormalization method is compared with two deployment schemes:genetic algorithm(GA)and memetic framework-based optimal RSU deployment(MFRD),to verify the improvement of communication performance.Our results show that the renormalization method is superior to other schemes in terms of RSU coverage and information reception rate.展开更多
The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device s...The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device stability.Here,we report a bottom-up holistic carrier management strategy induced synergistically by multiple chemical bonds to minimize bulk and interfacial energy losses for high-performance perovskite photovoltaics.4-trifluoromethyl-benzamidine hydrochloride(TBHCl)containing–CF_(3),amidine cation and Cl^(-)is in advance incorporated into SnO_(2)colloid solution to realize bottom-up modification.The synergistic effect of multiple functional groups and multiple-bond-induced chemical interaction are revealed theoretically and experimentally.F and Cl^(-)can passivate oxygen vacancy and/or undercoordinated Sn^(4+)defects by coordinating with Sn^(4+).The F can suppress cation migration and modulate crystallization via hydrogen bond with FA^(+),and can passivate lead defects by coordinating with Pb^(2+).The–NH_(2)–C=NH^(+)_(2)and Cl^(-)can passivate cation and anion vacancy defects through ionic bonds with perovskites,respectively.Through TBHCl modification,the suppression of agglomeration of SnO_(2)nanoparticles,bulk and interfacial defect passivation,and release of tensile strains of perovskite films are demonstrated,which resulted in a PCE enhancement from 21.28%to 23.40%and improved stability.With post-treatment,the efficiency is further improved to 23.63%.展开更多
文摘The goal of education is to cultivate learner autonomy. Studies in metacognition suggest that the ideal way to accomplish this is through metacognitive strategy training. Research also indicates that effective training programs depend on monitoring. To cultivate self-regulation or learner autonomy, it is necessary to exert external monitoring at the beginning, and gradually reduce external supervision as the students become more autonomous. The present study argues for cooperative group learning and regular evaluation as the main monitoring strategies. A semester long study indicates that cooperative group learning, besides being valuable in cultivating social relationship, and fostering cooperation and learner autonomy, can also serve as a good monitoring strategy in metacognitive strategy training. Regular evaluation, when it is progress- oriented and learner-centered, and conducted at proper times, will also provide valuable information for students to check, evaluate and adjust their learning. Self-questioning sheets and learner portfolios are also useful techniques in monitoring students' learning.
文摘The integration of communications,sensing and computing(I-CSC)has significant applications in vehicular ad hoc networks(VANETs).A roadside unit(RSU)plays an important role in I-CSC by performing functions such as information transmission and edge computing in vehicular communication.Due to the constraints of limited resources,RSU cannot achieve full coverage and deploying RSUs at key cluster heads of hierarchical structures of road networks is an effective management method.However,direct extracting the hierarchical structures for the resource allocation in VANETs is an open issue.In this paper,we proposed a network-based renormalization method based on information flow and geographical location to hierarchically deploy the RSU on the road networks.The renormalization method is compared with two deployment schemes:genetic algorithm(GA)and memetic framework-based optimal RSU deployment(MFRD),to verify the improvement of communication performance.Our results show that the renormalization method is superior to other schemes in terms of RSU coverage and information reception rate.
基金financially supported by the Support Plan for Overseas Students to Return to China for Entrepreneurship and Innovation(cx2020003)the Fundamental Research Funds for the Central Universities(2020CDJ-LHZZ-074)the Natural Science Foundation of Chongqing(cstc2020jcyj-msxm X0629)。
文摘The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device stability.Here,we report a bottom-up holistic carrier management strategy induced synergistically by multiple chemical bonds to minimize bulk and interfacial energy losses for high-performance perovskite photovoltaics.4-trifluoromethyl-benzamidine hydrochloride(TBHCl)containing–CF_(3),amidine cation and Cl^(-)is in advance incorporated into SnO_(2)colloid solution to realize bottom-up modification.The synergistic effect of multiple functional groups and multiple-bond-induced chemical interaction are revealed theoretically and experimentally.F and Cl^(-)can passivate oxygen vacancy and/or undercoordinated Sn^(4+)defects by coordinating with Sn^(4+).The F can suppress cation migration and modulate crystallization via hydrogen bond with FA^(+),and can passivate lead defects by coordinating with Pb^(2+).The–NH_(2)–C=NH^(+)_(2)and Cl^(-)can passivate cation and anion vacancy defects through ionic bonds with perovskites,respectively.Through TBHCl modification,the suppression of agglomeration of SnO_(2)nanoparticles,bulk and interfacial defect passivation,and release of tensile strains of perovskite films are demonstrated,which resulted in a PCE enhancement from 21.28%to 23.40%and improved stability.With post-treatment,the efficiency is further improved to 23.63%.