期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-objective Function Optimization for Environmental Control of a Greenhouse Based on a RBF and NSGA-Ⅱ
1
作者 Zhou Xiu-li Liu Ming-wei +3 位作者 Wang Ling Xu Xiao-chuan Chen Gang Wang De-fu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第1期75-89,共15页
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve... To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively. 展开更多
关键词 greenhouse temperature multi-objective optimization radial-basis function(RBF) non-dominated sorting genetic algorithm with an elite strategy(nsga-)
下载PDF
光伏电源与电动汽车充电站在配电网中的选址定容 被引量:7
2
作者 耿晓娜 刘伟东 范振亚 《陕西电力》 2015年第10期24-29,共6页
光伏电源和电动汽车充电站的迅速发展对其接入的配电网产生很大影响,就配电网中光伏电源和充电站选址定容问题进行研究,考虑光照辐射的随机性、电动汽车充放电以及负荷不确定性,采用随机潮流算法,以光伏电源和充电站投资、运行总成本,... 光伏电源和电动汽车充电站的迅速发展对其接入的配电网产生很大影响,就配电网中光伏电源和充电站选址定容问题进行研究,考虑光照辐射的随机性、电动汽车充放电以及负荷不确定性,采用随机潮流算法,以光伏电源和充电站投资、运行总成本,网络损失,以及环境成本为目标函数,建立了基于机会约束的优化配置模型,运用改进的保留精英策略非支配排序遗传算法(NSGA-Ⅱ)进行求解。最后,以IEEE33节点配电系统为例进行算法求解,通过交互武模糊决策对结果进行分析。结果表明,该方法可以使光伏电源和充电站得到优化配置,验证了模型和算法的有效性。 展开更多
关键词 光伏电源 电动汽车充电站 随机潮流 保留精英策略的非支配排序遗传算法(nsga-)) 优化配置
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部