To study the bonding properties between steel strand and concrete at room and cryogenic temperatures, a series of center pullout experiments were conducted on 96 bonding anchorage specimens at the lowest temperature o...To study the bonding properties between steel strand and concrete at room and cryogenic temperatures, a series of center pullout experiments were conducted on 96 bonding anchorage specimens at the lowest temperature of-165 ℃. The impacts on the bonding property of such parameters as the temperature, concrete strength, the relative concrete cover thickness, and the relative anchorage length were analyzed. The test results indicate that the changes in temperature have a clear effect on the bonding property between steel strand and concrete. As the temperature decreases, the bond stress, which corresponds to a 1 mm slip of steel strand in relation to concrete, and the ultimate bond strength initially increase and subsequently decrease at the inflection point of-80 ℃. The impact of the concrete strength on the bonding property, as shown by the tensile strength and the moisture content interaction, indicates that the bond stress vs concrete strength curve initially increases and later decreases with a decrease in temperature; the bond stress vs concrete cover thickness curve linearly increases, but the bond stress vs anchorage length curve linearly decreases at first and finally levels off.展开更多
Corrosion of steel structures is unavoidable and the structural performance decreases dramatically due to the corrosion. As a repairing method for corroded steel members, bonding carbon fiber sheets with resin had bee...Corrosion of steel structures is unavoidable and the structural performance decreases dramatically due to the corrosion. As a repairing method for corroded steel members, bonding carbon fiber sheets with resin had been developed. The purpose of this study is to propose the flexural strengthening method for steel members by using CFRP (carbon fiber reinforced polymer) strand sheets. In order to clarify the stiffening effect and the debonding characteristics of CFRP strand sheets, and to optimize the strengthening design specifications, the flexural tests using high tension steel beams strengthened with CFRP strand sheets are performed. Two cases of experiments are carried out. In Experiment 1, the result from previous research is reflected in the strengthening design. Moreover in Experiment 2, the debonding characteristics obtained from Experiment 1 are reflected. As a result, it was clarified that CFRP strand sheets have stiffening effect equivalent to the theoretical value and its debonding property is practically high enough when FRP (fiber reinforcement polymer) sheets have an appropriate bonding length.展开更多
基金Supported by the National Natural Science Foundation of China(No.51078260 and No.51478309)
文摘To study the bonding properties between steel strand and concrete at room and cryogenic temperatures, a series of center pullout experiments were conducted on 96 bonding anchorage specimens at the lowest temperature of-165 ℃. The impacts on the bonding property of such parameters as the temperature, concrete strength, the relative concrete cover thickness, and the relative anchorage length were analyzed. The test results indicate that the changes in temperature have a clear effect on the bonding property between steel strand and concrete. As the temperature decreases, the bond stress, which corresponds to a 1 mm slip of steel strand in relation to concrete, and the ultimate bond strength initially increase and subsequently decrease at the inflection point of-80 ℃. The impact of the concrete strength on the bonding property, as shown by the tensile strength and the moisture content interaction, indicates that the bond stress vs concrete strength curve initially increases and later decreases with a decrease in temperature; the bond stress vs concrete cover thickness curve linearly increases, but the bond stress vs anchorage length curve linearly decreases at first and finally levels off.
文摘Corrosion of steel structures is unavoidable and the structural performance decreases dramatically due to the corrosion. As a repairing method for corroded steel members, bonding carbon fiber sheets with resin had been developed. The purpose of this study is to propose the flexural strengthening method for steel members by using CFRP (carbon fiber reinforced polymer) strand sheets. In order to clarify the stiffening effect and the debonding characteristics of CFRP strand sheets, and to optimize the strengthening design specifications, the flexural tests using high tension steel beams strengthened with CFRP strand sheets are performed. Two cases of experiments are carried out. In Experiment 1, the result from previous research is reflected in the strengthening design. Moreover in Experiment 2, the debonding characteristics obtained from Experiment 1 are reflected. As a result, it was clarified that CFRP strand sheets have stiffening effect equivalent to the theoretical value and its debonding property is practically high enough when FRP (fiber reinforcement polymer) sheets have an appropriate bonding length.