The inconsistences of the higher-order shear resultant expressed in terms of displacement(s) and the complete boundary value problems of structures modeled by the nonlocal strain gradient theory have not been well add...The inconsistences of the higher-order shear resultant expressed in terms of displacement(s) and the complete boundary value problems of structures modeled by the nonlocal strain gradient theory have not been well addressed. This paper develops a size-dependent Timoshenko beam model that considers both the nonlocal effect and strain gradient effect. The variationally consistent boundary conditions corresponding to the equations of motion of Timoshenko beams are reformulated with the aid of the weighted residual method. The complete boundary value problems of nonlocal strain gradient Timoshenko beams undergoing buckling are solved in closed forms. All the possible higher-order boundary conditions induced by the strain gradient are selectively suggested based on the fact that the buckling loads increase with the increasing aspect ratios of beams from the conventional mechanics point of view. Then, motivated by the expression for beams with simply-supported (SS) boundary conditions, some semiempirical formulae are obtained by curve fitting procedures.展开更多
Variational principles for the buckling and vibration of multi-walled carbon nanotubes (MWCNTs) are established with the aid of the semi-inverse method. They are used to derive the natural and geometric boundary con...Variational principles for the buckling and vibration of multi-walled carbon nanotubes (MWCNTs) are established with the aid of the semi-inverse method. They are used to derive the natural and geometric boundary conditions coupled by small scale parameters. Hamilton's principle and Rayleigh's quotient for the buckling and vibration of the MWCNTs are given. The Rayleigh-Ritz method is used to study the buckling and vibration of the single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) with three typical boundary conditions. The numerical results reveal that the small scale parameter, aspect ratio, and boundary conditions have a profound effect on the buckling and vibration of the SWCNTs and DWCNTs.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11602032)the China Postdoctoral Science Foundation(No.2016M602733)+1 种基金the Shaanxi Postdoctoral Science Foundation(No.2017BSHEDZZ123)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Nos.310821163502 and 300102219315)
文摘The inconsistences of the higher-order shear resultant expressed in terms of displacement(s) and the complete boundary value problems of structures modeled by the nonlocal strain gradient theory have not been well addressed. This paper develops a size-dependent Timoshenko beam model that considers both the nonlocal effect and strain gradient effect. The variationally consistent boundary conditions corresponding to the equations of motion of Timoshenko beams are reformulated with the aid of the weighted residual method. The complete boundary value problems of nonlocal strain gradient Timoshenko beams undergoing buckling are solved in closed forms. All the possible higher-order boundary conditions induced by the strain gradient are selectively suggested based on the fact that the buckling loads increase with the increasing aspect ratios of beams from the conventional mechanics point of view. Then, motivated by the expression for beams with simply-supported (SS) boundary conditions, some semiempirical formulae are obtained by curve fitting procedures.
基金supported by the National Basic Research Program of China(973 Program)(No.2011CB610300)the 111 Project(No.B07050)+3 种基金the National Natural Science Foundation of China(Nos.10972182,11172239,and 10902089)the Doctoral Program Foundation of Education Ministry of China(No.20106102110019)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment(No.GZ0802)the Doctorate Foundation of Northwestern Polytechnical University(No.CX201111)
文摘Variational principles for the buckling and vibration of multi-walled carbon nanotubes (MWCNTs) are established with the aid of the semi-inverse method. They are used to derive the natural and geometric boundary conditions coupled by small scale parameters. Hamilton's principle and Rayleigh's quotient for the buckling and vibration of the MWCNTs are given. The Rayleigh-Ritz method is used to study the buckling and vibration of the single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) with three typical boundary conditions. The numerical results reveal that the small scale parameter, aspect ratio, and boundary conditions have a profound effect on the buckling and vibration of the SWCNTs and DWCNTs.