The damage mechanism and energy dissipation of the Polyethylene (PE) laminates in impacting was investigated. It was found that the dissipated energy of the impacting sphere bullet by the 1-mmthick PE plate firstly in...The damage mechanism and energy dissipation of the Polyethylene (PE) laminates in impacting was investigated. It was found that the dissipated energy of the impacting sphere bullet by the 1-mmthick PE plate firstly increased with the impacting velocity increasing from 50 to about 300 m/s, and then decreased with the impacting velocity increasing up to 600 m/s. According to the measured deformation and damage degree, a numerical simulation of the dissipated energy was made and obvious offset was found with the experimental results. The quasi-static properties of the PE fibers, decreasing with increase in tensile velocity, may be the main reason for the offset.展开更多
基金Funded by National Natural Science Foundation of China(No.51502220)
文摘The damage mechanism and energy dissipation of the Polyethylene (PE) laminates in impacting was investigated. It was found that the dissipated energy of the impacting sphere bullet by the 1-mmthick PE plate firstly increased with the impacting velocity increasing from 50 to about 300 m/s, and then decreased with the impacting velocity increasing up to 600 m/s. According to the measured deformation and damage degree, a numerical simulation of the dissipated energy was made and obvious offset was found with the experimental results. The quasi-static properties of the PE fibers, decreasing with increase in tensile velocity, may be the main reason for the offset.