This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine(VAWT) depending on several values of tip speed ...This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine(VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil(NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.展开更多
Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct...Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.展开更多
To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a blade with NACA0015 airfoil by using a small simple icing ...To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a blade with NACA0015 airfoil by using a small simple icing wind tunnel. Tests were carried out at some typical attack angles under different wind speeds and flow discharges of a water spray with wind. The icing shape and area on blade surface were recorded and measured, Then the numerical computation was carded out to calculate the lift and drag coefficients of the blade before and after ice accretion according to the experiment result, the effect of icing on the aerodynamic characteristics of blade were discussed.展开更多
Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis ...Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis wind turbine(SB-VAWT) with or without pitch control was conducted from the aspects of aerodynamic force,flow structure and power coefficient.The computational fluid dynamics(CFD) prediction results show a significant increase in power coefficient for SB-VAWT with pitch control.According to the aerodynamic forces and total torque coefficient obtained at various tip speed ratios(TSRs),the results indicate that the blade pitch method can increase the power output and decrease the deformation of blade;especially,the total torque coefficient of blade pitch control at TSR 1.5 is about 2.5 times larger than that of fixed pitch case.Furthermore,experiment was carried out to verify the feasibility of pitch control methods.The results show that the present collective pitch control and individual pitch control methods can improve the self-starting capacity of SB-VAWT,and the former is much better and its proper operating TSRs ranges from 0.4 to 0.6.展开更多
文摘This paper presents a wind tunnel experiment for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed vertical axis wind turbine(VAWT) depending on several values of tip speed ratio. In the present study, the wind turbine is a four-bladed VAWT. The test airfoil of blade is symmetry airfoil(NACA0021) with 32 pressure ports used for the pressure measurements on blade surface. Based on the pressure distributions which are acted on the surface of rotor blade measured during rotation by multiport pressure-scanner mounted on a hub, the power, tangential force, lift and drag coefficients which are obtained by pressure distribution are discussed as a function of azimuthally position. And then, the loads which are applied to the entire wind turbine are compared with the experiment data of pressure distribution. As a result, it is clarified that aerodynamic forces take maximum value when the blade is moving to upstream side, and become small and smooth at downstream side. The power and torque coefficients which are based on the pressure distribution are larger than that by torque meter.
基金Project(HEUCF110707)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(E201216)supported by Heilongjiang Natural Science Fund,China
文摘Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.
基金Supported by National Natural Science Foundation of China (10702015)
文摘To invest the condition of ice accretion on the blade used for straight-bladed vertical axis wind turbine (SB-VAWT), wind tunnel tests were carried out on a blade with NACA0015 airfoil by using a small simple icing wind tunnel. Tests were carried out at some typical attack angles under different wind speeds and flow discharges of a water spray with wind. The icing shape and area on blade surface were recorded and measured, Then the numerical computation was carded out to calculate the lift and drag coefficients of the blade before and after ice accretion according to the experiment result, the effect of icing on the aerodynamic characteristics of blade were discussed.
基金Project (E201216) supported by Heilongjiang Provincial Natural Science Foundation,China
文摘Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis wind turbine(SB-VAWT) with or without pitch control was conducted from the aspects of aerodynamic force,flow structure and power coefficient.The computational fluid dynamics(CFD) prediction results show a significant increase in power coefficient for SB-VAWT with pitch control.According to the aerodynamic forces and total torque coefficient obtained at various tip speed ratios(TSRs),the results indicate that the blade pitch method can increase the power output and decrease the deformation of blade;especially,the total torque coefficient of blade pitch control at TSR 1.5 is about 2.5 times larger than that of fixed pitch case.Furthermore,experiment was carried out to verify the feasibility of pitch control methods.The results show that the present collective pitch control and individual pitch control methods can improve the self-starting capacity of SB-VAWT,and the former is much better and its proper operating TSRs ranges from 0.4 to 0.6.