The objective of this study was to estimate the carbon storage capacity of Pinus densiflora stands using remotely sensed data by combining digital aerial photography with light detection and ranging(LiDAR) data.A digi...The objective of this study was to estimate the carbon storage capacity of Pinus densiflora stands using remotely sensed data by combining digital aerial photography with light detection and ranging(LiDAR) data.A digital canopy model(DCM),generated from the LiDAR data,was combined with aerial photography for segmenting crowns of individual trees.To eliminate errors in over and under-segmentation,the combined image was smoothed using a Gaussian filtering method.The processed image was then segmented into individual trees using a marker-controlled watershed segmentation method.After measuring the crown area from the segmented individual trees,the individual tree diameter at breast height(DBH) was estimated using a regression function developed from the relationship observed between the field-measured DBH and crown area.The above ground biomass of individual trees could be calculated by an image-derived DBH using a regression function developed by the Korea Forest Research Institute.The carbon storage,based on individual trees,was estimated by simple multiplication using the carbon conversion index(0.5),as suggested in guidelines from the Intergovernmental Panel on Climate Change.The mean carbon storage per individual tree was estimated and then compared with the field-measured value.This study suggested that the biomass and carbon storage in a large forest area can be effectively estimated using aerial photographs and LiDAR data.展开更多
This study examines the impact of different mangrove species on the structure and carbon storage potential of mangrove stands in Myanmar. We focused on three species: Avicennia officinalis, Avicennia marina and Brugui...This study examines the impact of different mangrove species on the structure and carbon storage potential of mangrove stands in Myanmar. We focused on three species: Avicennia officinalis, Avicennia marina and Bruguiera sexangula. These species were selected for their fast growth, ability to protect against cyclones, and effectiveness in coastal defense during mangrove restoration. To collect data on tree structure and carbon storage, we conducted field surveys measuring parameters such as diameter at breast height (DBH), tree height and crown diameter for each tree. Non-destructive methods were used for data collection. Using ANOVA and post-hoc multiple comparison tests, we assessed differences in structure and carbon stock among the three species. Regression analysis was also performed to understand the relationship between carbon stock and structural attributes. In terms of stand densities, we observed variations among species, with pioneer stage plantations exhibiting higher densities compared to mature stands. Seedlings showed sufficient regeneration, supporting the sustainability of the forest. Biomass accumulation varied across species, with A. officinalis having the highest average biomass. Aboveground biomass showed a strong correlation with basal area. A. officinalis had the highest total biomass carbon accumulation at 55.29 ± 20.91 Mg C ha<sup>-1</sup>, with 77.43% aboveground carbon and 22.57% belowground carbon. A. marina stored 41.09 ± 11.03 Mg C ha<sup>-1</sup>, with a similar distribution of 76.05% aboveground and 23.95% belowground carbon, while B. sexangula stored 23.23 ± 3.12 Mg C ha<sup>-1</sup>, with 70.70% aboveground carbon and 29.30% belowground carbon. The amount of aboveground carbon was a significant portion of the overall carbon storage and correlated with tree density, diameter, basal area and height. Our findings highlight the importance of selecting suitable species and considering structural attributes for mangrove restoration and carbon storage efforts. These results provide v展开更多
This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (...This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy.展开更多
The Jianghan plain is one of the important bases of China’s agricultural productivity,located in central and southern Hubei province in the mi ddle reach of Yangtze River.The Jian ghan Plain is the one region of floo...The Jianghan plain is one of the important bases of China’s agricultural productivity,located in central and southern Hubei province in the mi ddle reach of Yangtze River.The Jian ghan Plain is the one region of flood a nd waterlog-ging occurring frequently.The area is low-lying and is characterized by deep alluvial deposits,many smalle r rivers and numerous larger and shallow lakes fo rmed by meandering of the Changjiang(Yangtze)River.The alluvial plain is a honey-comb of waterways bordered by natura l levees,and the depressional areas encompassed by these waterways are dish-shaped in cross-section.The s ystems of rivers and lakes are main we tland types in this area.Owing to wetlands in Jianghan plain-lake district fulfill the function related to the flood r egulation,the estimating of the sto rage capacity is use-ful to controlling and reducing the d isasters of flooding and waterlogging.In this paper,by selecting typic al experimental area,based on its DEM,the relation a mong the water level,area and volume of inundation in the typical region i s de-fined by using regression analysis.Based on the agricultural cultivating line in this region and the experim ent result of bear-ing the inundation for crop,we defin e the storage capacity of the typical region in Jianghan Plain -Lake distr ict.展开更多
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci...There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.展开更多
Both the Global Positioning System(GPS)and Gravity Recovery and Climate Experiment(GRACE)/GRACE Follow-On(GFO)provide effective tools to infer surface mass changes.In this paper,we combined GPS,GRACE/GFO spherical har...Both the Global Positioning System(GPS)and Gravity Recovery and Climate Experiment(GRACE)/GRACE Follow-On(GFO)provide effective tools to infer surface mass changes.In this paper,we combined GPS,GRACE/GFO spherical harmonic(SH)solutions and GRACE/GFO mascon solutions to analyze the total surface mass changes and terrestrial water storage(TWS)changes in the Shaan-Gan-Ning Region(SGNR)over the period from December 2010 to February 2021.To improve the reliability of GPS inversion results,an improved regularization Laplace matrix and monthly optimal regularization parameter estimation strategy were employed to solve the ill-posed problem.The results show that the improved Laplace matrix can suppress the edge effects better than that of the traditional Laplace matrix,and the corre-lation coefficient and standard deviation(STD)between the original signal and inversion results from the traditional and improved Laplace matrix are 0.84 and 0.88,and 17.49 mm and 15.16 mm,respectively.The spatial distributions of annual amplitudes and time series changes for total surface mass changes derived from GPS agree well with GRACE/GFO SH solutions and mascon solutions,and the correlation coefficients of total surface mass change time series between GPS and GRACE/GFO SH solutions,GPS and GRACE/GFO mascon solutions are 0.80 and 0.77.However,the obvious differences still exist in local regions.In addition,the seasonal characteristics,increasing and decreasing rate of TWS change time series derived from GPS,GRACE/GFO SH and mascon solutions agree well with the Global Land Data Assimilation System(GLDAS)hydrological model in the studied area,and generally consistent with the precipitation data.Meanwhile,TWS changes derived from GPS and GRACE mascon solutions in the SGNR are more reliable than those of GRACE SH solutions over the period from January 2016 to June 2017(the final operation phase of the GRACE mission).展开更多
Aims Evapotranspiration(ET)is a key component of water balance and is closely linked to ecosystem productivity.In arid regions,large proportion of precipitation(PPT)is returned to the atmosphere through ET,with only a...Aims Evapotranspiration(ET)is a key component of water balance and is closely linked to ecosystem productivity.In arid regions,large proportion of precipitation(PPT)is returned to the atmosphere through ET,with only a small amount available to plants.Our objective was to examine the variability in ET–soil water relationship based on a set of ecosystems that are representative for semi-arid Inner Mongolia and its main land use practices.Methods This study used Eddy covariance(EC)data of water vapor(i.e.ET,mm),PPT(mm),soil volumetric water content(VWC,%),root biomass density and soil properties from three paired sites in semi-arid Inner Mongolia:cropland(Cropland-D)versus undisturbed grassland(Steppe-D),grazed grassland(Grazed Steppe-X)versus fenced grassland(Fenced Steppe-X)and poplar plantation(Poplar-K)versus undisturbed shrubland(Shrubland-K).The paired sites experienced similar climate conditions and were equipped with the same monitoring systems.Important Findings The ET/PPT ratio was significantly lower at Cropland-D and Grazed Steppe-X in comparison to the undisturbed grasslands,Steppe-D and Fenced Steppe-X.These differences are in part explained by the lower VWC in the upper soil layers associated with compaction of surface soil in heavily grazed and fallow fields.In contrast,the ET/PPT ratio was much higher at the poplar plantation compared to the undisturbed shrubland because poplar roots tap groundwater.The VWC of different soil layers responded differently to rainfall events across the six study sites.Except for Poplar-K,ETwas significantly constrained by VWC at the other five sites,although the correlation coefficients varied among soil layers.The relative contribution of soil water to ET correlated with the density of root biomass in the soil(R2=0.67,P<0.01).The soil water storage in the upper 50 cm of soil contributed 59,43,64 and 23%of total water loss as ET at Steppe-D,Cropland-D,Shrubland-K and Poplar-K,respectively.Our across-site analysis indicates that the site level of soil water for ET dif展开更多
A write-unidirectional memory (WUM)is a binary reusable information storagemedium. During the odd (or even) cycle of updating information, we can only write l’s(or 0’s) in selected bit positions of WUM, and not chan...A write-unidirectional memory (WUM)is a binary reusable information storagemedium. During the odd (or even) cycle of updating information, we can only write l’s(or 0’s) in selected bit positions of WUM, and not change other positions. WUM isa mathernatical model of a class of reusable digital discs. The writing constraints aredue to the storage technology of this class of reusable digital discs. During the storingand updating process, the storage speed of writing both 0’s and l’s is much展开更多
The Sandstorm Source Control Project in and around the Beijing-Tianjin region was one of the most important ecological projects in China.Terrestrial water storage(TWS)has important impacts on the ecological constructi...The Sandstorm Source Control Project in and around the Beijing-Tianjin region was one of the most important ecological projects in China.Terrestrial water storage(TWS)has important impacts on the ecological construction,agriculture,industry,and resident's lives.Based on the Gravity Recovery and Climate Experiment(GRACE)data,meteorological and Moderate Resolution Imaging Spectroradiometer(MODIS)data,etc.,this paper analyzed spatiotemporal characteristics of TWS,groundwater storage,and precipitation,and explored the influencing factors of regional TWS combined with land use and land cover(LULC),social and economic data.The most important results were as follows:(1)From 2003 to 2016,TWS in the Beijing-Tianjin Sandstorm Source Region showed a decreasing trend with a rate of 3.14 mm yr-1.(2)The TWS decline was caused mainly by groundwater overexploitation,but not pre-cipitation variation.(3)Spatiotemporal variations of TWS were related to LULC.The area with the most serious decrease of TWS was mainly located in the southwestern part of the region,where farmland percentage and population density were greater.(4)Reducing the percent of farmland and tree planting,and adding the shrub and grass planting,could be a viable choice for the Beijing-Tianjin Sandstorm Source Control Project.These results provide a scientific basis for regional water resource and ecological management.展开更多
基金the support of the ‘Public Applications Research of Satellite Data Project’ (Grant No. FR09662). provided by the Korea Aerospace Research Institutesupported by a research grant from the Korea Science and Engineering Foundation (KOSEF) (Grant No. A307-K001)
文摘The objective of this study was to estimate the carbon storage capacity of Pinus densiflora stands using remotely sensed data by combining digital aerial photography with light detection and ranging(LiDAR) data.A digital canopy model(DCM),generated from the LiDAR data,was combined with aerial photography for segmenting crowns of individual trees.To eliminate errors in over and under-segmentation,the combined image was smoothed using a Gaussian filtering method.The processed image was then segmented into individual trees using a marker-controlled watershed segmentation method.After measuring the crown area from the segmented individual trees,the individual tree diameter at breast height(DBH) was estimated using a regression function developed from the relationship observed between the field-measured DBH and crown area.The above ground biomass of individual trees could be calculated by an image-derived DBH using a regression function developed by the Korea Forest Research Institute.The carbon storage,based on individual trees,was estimated by simple multiplication using the carbon conversion index(0.5),as suggested in guidelines from the Intergovernmental Panel on Climate Change.The mean carbon storage per individual tree was estimated and then compared with the field-measured value.This study suggested that the biomass and carbon storage in a large forest area can be effectively estimated using aerial photographs and LiDAR data.
文摘This study examines the impact of different mangrove species on the structure and carbon storage potential of mangrove stands in Myanmar. We focused on three species: Avicennia officinalis, Avicennia marina and Bruguiera sexangula. These species were selected for their fast growth, ability to protect against cyclones, and effectiveness in coastal defense during mangrove restoration. To collect data on tree structure and carbon storage, we conducted field surveys measuring parameters such as diameter at breast height (DBH), tree height and crown diameter for each tree. Non-destructive methods were used for data collection. Using ANOVA and post-hoc multiple comparison tests, we assessed differences in structure and carbon stock among the three species. Regression analysis was also performed to understand the relationship between carbon stock and structural attributes. In terms of stand densities, we observed variations among species, with pioneer stage plantations exhibiting higher densities compared to mature stands. Seedlings showed sufficient regeneration, supporting the sustainability of the forest. Biomass accumulation varied across species, with A. officinalis having the highest average biomass. Aboveground biomass showed a strong correlation with basal area. A. officinalis had the highest total biomass carbon accumulation at 55.29 ± 20.91 Mg C ha<sup>-1</sup>, with 77.43% aboveground carbon and 22.57% belowground carbon. A. marina stored 41.09 ± 11.03 Mg C ha<sup>-1</sup>, with a similar distribution of 76.05% aboveground and 23.95% belowground carbon, while B. sexangula stored 23.23 ± 3.12 Mg C ha<sup>-1</sup>, with 70.70% aboveground carbon and 29.30% belowground carbon. The amount of aboveground carbon was a significant portion of the overall carbon storage and correlated with tree density, diameter, basal area and height. Our findings highlight the importance of selecting suitable species and considering structural attributes for mangrove restoration and carbon storage efforts. These results provide v
基金supported by the National Natural Science Foundation of China under Grant 61933014 and Grant 62173243.
文摘This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy.
文摘The Jianghan plain is one of the important bases of China’s agricultural productivity,located in central and southern Hubei province in the mi ddle reach of Yangtze River.The Jian ghan Plain is the one region of flood a nd waterlog-ging occurring frequently.The area is low-lying and is characterized by deep alluvial deposits,many smalle r rivers and numerous larger and shallow lakes fo rmed by meandering of the Changjiang(Yangtze)River.The alluvial plain is a honey-comb of waterways bordered by natura l levees,and the depressional areas encompassed by these waterways are dish-shaped in cross-section.The s ystems of rivers and lakes are main we tland types in this area.Owing to wetlands in Jianghan plain-lake district fulfill the function related to the flood r egulation,the estimating of the sto rage capacity is use-ful to controlling and reducing the d isasters of flooding and waterlogging.In this paper,by selecting typic al experimental area,based on its DEM,the relation a mong the water level,area and volume of inundation in the typical region i s de-fined by using regression analysis.Based on the agricultural cultivating line in this region and the experim ent result of bear-ing the inundation for crop,we defin e the storage capacity of the typical region in Jianghan Plain -Lake distr ict.
基金supported by State Grid Corporation Limited Science and Technology Project Funding(Contract No.SGCQSQ00YJJS2200380).
文摘There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.
基金This study was funded by the National Natural Science Foundation of China(Grant Nos.41974015,42061134007 and 41474019).
文摘Both the Global Positioning System(GPS)and Gravity Recovery and Climate Experiment(GRACE)/GRACE Follow-On(GFO)provide effective tools to infer surface mass changes.In this paper,we combined GPS,GRACE/GFO spherical harmonic(SH)solutions and GRACE/GFO mascon solutions to analyze the total surface mass changes and terrestrial water storage(TWS)changes in the Shaan-Gan-Ning Region(SGNR)over the period from December 2010 to February 2021.To improve the reliability of GPS inversion results,an improved regularization Laplace matrix and monthly optimal regularization parameter estimation strategy were employed to solve the ill-posed problem.The results show that the improved Laplace matrix can suppress the edge effects better than that of the traditional Laplace matrix,and the corre-lation coefficient and standard deviation(STD)between the original signal and inversion results from the traditional and improved Laplace matrix are 0.84 and 0.88,and 17.49 mm and 15.16 mm,respectively.The spatial distributions of annual amplitudes and time series changes for total surface mass changes derived from GPS agree well with GRACE/GFO SH solutions and mascon solutions,and the correlation coefficients of total surface mass change time series between GPS and GRACE/GFO SH solutions,GPS and GRACE/GFO mascon solutions are 0.80 and 0.77.However,the obvious differences still exist in local regions.In addition,the seasonal characteristics,increasing and decreasing rate of TWS change time series derived from GPS,GRACE/GFO SH and mascon solutions agree well with the Global Land Data Assimilation System(GLDAS)hydrological model in the studied area,and generally consistent with the precipitation data.Meanwhile,TWS changes derived from GPS and GRACE mascon solutions in the SGNR are more reliable than those of GRACE SH solutions over the period from January 2016 to June 2017(the final operation phase of the GRACE mission).
基金Natural Science Foundation of China(30928002)National Aeronautics and Space Administration(NASA)-NEWS Program of US(NN-H-04-Z-YS-005-N)+2 种基金the Outstanding Overseas Scientists Team Project of CASthe State Key Basic Research Development Program of China(2007CB106800)the National Basic Research Program of China(973 Program)(2010CB833501).
文摘Aims Evapotranspiration(ET)is a key component of water balance and is closely linked to ecosystem productivity.In arid regions,large proportion of precipitation(PPT)is returned to the atmosphere through ET,with only a small amount available to plants.Our objective was to examine the variability in ET–soil water relationship based on a set of ecosystems that are representative for semi-arid Inner Mongolia and its main land use practices.Methods This study used Eddy covariance(EC)data of water vapor(i.e.ET,mm),PPT(mm),soil volumetric water content(VWC,%),root biomass density and soil properties from three paired sites in semi-arid Inner Mongolia:cropland(Cropland-D)versus undisturbed grassland(Steppe-D),grazed grassland(Grazed Steppe-X)versus fenced grassland(Fenced Steppe-X)and poplar plantation(Poplar-K)versus undisturbed shrubland(Shrubland-K).The paired sites experienced similar climate conditions and were equipped with the same monitoring systems.Important Findings The ET/PPT ratio was significantly lower at Cropland-D and Grazed Steppe-X in comparison to the undisturbed grasslands,Steppe-D and Fenced Steppe-X.These differences are in part explained by the lower VWC in the upper soil layers associated with compaction of surface soil in heavily grazed and fallow fields.In contrast,the ET/PPT ratio was much higher at the poplar plantation compared to the undisturbed shrubland because poplar roots tap groundwater.The VWC of different soil layers responded differently to rainfall events across the six study sites.Except for Poplar-K,ETwas significantly constrained by VWC at the other five sites,although the correlation coefficients varied among soil layers.The relative contribution of soil water to ET correlated with the density of root biomass in the soil(R2=0.67,P<0.01).The soil water storage in the upper 50 cm of soil contributed 59,43,64 and 23%of total water loss as ET at Steppe-D,Cropland-D,Shrubland-K and Poplar-K,respectively.Our across-site analysis indicates that the site level of soil water for ET dif
基金Natural Science Foundation of Chinese Educational Ministry.
文摘A write-unidirectional memory (WUM)is a binary reusable information storagemedium. During the odd (or even) cycle of updating information, we can only write l’s(or 0’s) in selected bit positions of WUM, and not change other positions. WUM isa mathernatical model of a class of reusable digital discs. The writing constraints aredue to the storage technology of this class of reusable digital discs. During the storingand updating process, the storage speed of writing both 0’s and l’s is much
基金This work was supported by the National Key Research and Development Program of China(Grant No.2016YFC0500801 and 2016YFC0500804)the National Natural Science Foundation of China(Grant Nos.41701010 and 410701503)the Fundamental Research Funds for the Central Non-profit Research Institution of Chinese Academy of Forestry(Grant No.CAFYBB2019MA009).
文摘The Sandstorm Source Control Project in and around the Beijing-Tianjin region was one of the most important ecological projects in China.Terrestrial water storage(TWS)has important impacts on the ecological construction,agriculture,industry,and resident's lives.Based on the Gravity Recovery and Climate Experiment(GRACE)data,meteorological and Moderate Resolution Imaging Spectroradiometer(MODIS)data,etc.,this paper analyzed spatiotemporal characteristics of TWS,groundwater storage,and precipitation,and explored the influencing factors of regional TWS combined with land use and land cover(LULC),social and economic data.The most important results were as follows:(1)From 2003 to 2016,TWS in the Beijing-Tianjin Sandstorm Source Region showed a decreasing trend with a rate of 3.14 mm yr-1.(2)The TWS decline was caused mainly by groundwater overexploitation,but not pre-cipitation variation.(3)Spatiotemporal variations of TWS were related to LULC.The area with the most serious decrease of TWS was mainly located in the southwestern part of the region,where farmland percentage and population density were greater.(4)Reducing the percent of farmland and tree planting,and adding the shrub and grass planting,could be a viable choice for the Beijing-Tianjin Sandstorm Source Control Project.These results provide a scientific basis for regional water resource and ecological management.