In this paper,an improved mean-square exponential stability condition and delayed-state-feedback controller for stochastic Markovian jump systems with mode-dependent time-varying state delays are obtained. First,by co...In this paper,an improved mean-square exponential stability condition and delayed-state-feedback controller for stochastic Markovian jump systems with mode-dependent time-varying state delays are obtained. First,by constructing a modified Lyapunov-Krasovskii functional,a mean-square exponential stability condition for the above systems is presented in terms of linear matrix inequalities (LMIs). Here,the decay rate can be a finite positive constant in a range and the derivative of time-varying delays is only required to have an upper bound which is not required to be less than 1. Then,based on the proposed stability condition,a delayed-state-feedback controller is designed. Finally,numerical examples are presented to illustrate the effectiveness of the theoretical results.展开更多
This paper concerns the robust stability analysis of uncertain systems with time delays as random variables drawn from some probability distribution. The delay-distribution-dependent criteria for the exponential stabi...This paper concerns the robust stability analysis of uncertain systems with time delays as random variables drawn from some probability distribution. The delay-distribution-dependent criteria for the exponential stability of the original system in mean square sense are achieved by Lyapunov functional method and the linear matrix inequality (LMI) technique. The proposed approach involves neither free weighting matrices nor any model transformation, and it shows that the new criteria can provide less conservative results than some existing ones. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method.展开更多
The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the ...The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions.展开更多
This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a sto...This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a stochastic Lyapunov-Krasovskii functional, new delay-dependent criteria in terms of linear matrix inequalities are derived for the the robust stochastic stability and the H∞ disturbance attenuation. Three numerical examples axe given. The results show that the proposed method is efficient and much less conservative than the existing results in the literature.展开更多
This paper considers the problem of delay-dependent exponential stability in mean square for stochastic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation an...This paper considers the problem of delay-dependent exponential stability in mean square for stochastic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation and introducing free weighting matrices, a new type of Lyapunov-Krasovskii functional is constructed based on linear matrix inequalities (LMIs), and some new delay-dependent criteria are obtained. These criteria include the delay-independent/rate- dependent and delay-dependent/rate-independent exponential stability criteria. These new criteria are less conservative than existing ones. Numerical examples demonstrate that these new criteria are effective and are an improvement over existing ones.展开更多
This paper presents a new robust sliding mode control (SMC) method with well-developed theoretical proof for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noi...This paper presents a new robust sliding mode control (SMC) method with well-developed theoretical proof for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties and to introduce adjustable parameters for control design along with the SMC method. It leads to a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1. Furthermore, it is theoretically proved that the proposed method with the SVD and adjustable parameters is less conservatism than the method without the SVD. The paper is mainly to provide all strict theoretical proofs for the method and results.展开更多
A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stoc...A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.展开更多
This paper studies the distributed synchronization control problem of a class of stochastic dynamical systems with time-varying delays and random noise via randomly occurring control. The activation of the distributed...This paper studies the distributed synchronization control problem of a class of stochastic dynamical systems with time-varying delays and random noise via randomly occurring control. The activation of the distributed adaptive controller and the update of the control gain designed in this paper all happen randomly. Based on the Lyapunov stability theory, LaSalle invariance principle, combined with the use of the properties of the matrix Kronecker product, stochastic differential equation theory and other related tools, by constructing the appropriate Lyapunov functional, the criterion for the distributed synchronization of this type of stochastic complex networks in mean square is obtained.展开更多
In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adapt...In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.展开更多
The problems of robust exponential stability in mean square and delayed state feedback stabilization for uncertain stochastic systems with time-varying delay are studied. By using Jensen's integral inequality and com...The problems of robust exponential stability in mean square and delayed state feedback stabilization for uncertain stochastic systems with time-varying delay are studied. By using Jensen's integral inequality and combining with the free weighting matrix approach, new delay-dependent stability conditions and delayed state feedback stabilization criteria are obtained in terms of linear matrix inequalities. Meanwhile, the proposed delayed state feedback stabilization criteria are more convenient in application than the existing ones since fewer tuning parameters are involved. Numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
A robust dissipative control problem for a class of It-type stochastic systems is discussed with Markovian jumping parameters and time-varying delay. A memoryless state feedback dissipative controller is developed bas...A robust dissipative control problem for a class of It-type stochastic systems is discussed with Markovian jumping parameters and time-varying delay. A memoryless state feedback dissipative controller is developed based on Lyapunov-Krasovskii functional approach such that the closed-loop system is robustly stochastically stable and weakly delay-dependent (RSSWDD) and strictly (Q, S, R)-dissipative. The sufficient condition on the existence of state feedback dissipative controller is presented by linear matrix inequality (LMI). And the desired controller can be concluded as solving a set of LMI. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.展开更多
In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturba...In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturbance, interval time-varying,and distributed delay. The aim is to design a delay-dependent robust H∞control which ensures the robust asymptotic stability of the given system and to express it in the form of linear matrix inequalities(LMIs). Numerical examples are given to demonstrate the effectiveness of the proposed method. The results are also compared with the existing results to show its conservativeness.展开更多
基金Supported by National Natural Science Foundation of China(60904026)the Program for New Century Excellent Talents in University+1 种基金the Graduate Innovation Program of Jiangsu Province(CX09B-051Z)the Scientific Research Foundation of Graduate School of Southeast University (YBJJ0929)
文摘In this paper,an improved mean-square exponential stability condition and delayed-state-feedback controller for stochastic Markovian jump systems with mode-dependent time-varying state delays are obtained. First,by constructing a modified Lyapunov-Krasovskii functional,a mean-square exponential stability condition for the above systems is presented in terms of linear matrix inequalities (LMIs). Here,the decay rate can be a finite positive constant in a range and the derivative of time-varying delays is only required to have an upper bound which is not required to be less than 1. Then,based on the proposed stability condition,a delayed-state-feedback controller is designed. Finally,numerical examples are presented to illustrate the effectiveness of the theoretical results.
基金supported by National Natural Science Foundation of China (No. 60874030)Natural Science Foundation of Jiangsu Province (No. BK2010293)+1 种基金Jiangsu Government Scholarship for Overseas StudiesNatural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 09KJB510018,No. 07KJB510125)
文摘This paper concerns the robust stability analysis of uncertain systems with time delays as random variables drawn from some probability distribution. The delay-distribution-dependent criteria for the exponential stability of the original system in mean square sense are achieved by Lyapunov functional method and the linear matrix inequality (LMI) technique. The proposed approach involves neither free weighting matrices nor any model transformation, and it shows that the new criteria can provide less conservative results than some existing ones. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method.
基金Supported by National Natural Science Foundation of China (60425310, 60574014), the Doctor Subject Foundation of China (20050533015, 200805330004), the Program for New Century Excellent Talents in University (NCET-06-0679), and the Natural Science Foundation of Hunan Province (08JJ1010)
基金supported by Department of Science and Technology,New Delhi,India(SR/S4/MS:485/07)
文摘The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions.
基金Project supported by the National Natural Science Foundation of China (No. 60874027)
文摘This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a stochastic Lyapunov-Krasovskii functional, new delay-dependent criteria in terms of linear matrix inequalities are derived for the the robust stochastic stability and the H∞ disturbance attenuation. Three numerical examples axe given. The results show that the proposed method is efficient and much less conservative than the existing results in the literature.
基金supported by the National Natural Science Foundation of China (No.60525303, 60604004, 60704009) Natural Science Foundationof Hebei Province, China (No.F2005000390, F2006000270)
文摘This paper considers the problem of delay-dependent exponential stability in mean square for stochastic systems with polytopic-type uncertainties and time-varying delay. Applying the descriptor model transformation and introducing free weighting matrices, a new type of Lyapunov-Krasovskii functional is constructed based on linear matrix inequalities (LMIs), and some new delay-dependent criteria are obtained. These criteria include the delay-independent/rate- dependent and delay-dependent/rate-independent exponential stability criteria. These new criteria are less conservative than existing ones. Numerical examples demonstrate that these new criteria are effective and are an improvement over existing ones.
基金partially supported by the National Science Foundation Grants(Nos.0940662,1115564)of Prof.S.-G.Wang
文摘This paper presents a new robust sliding mode control (SMC) method with well-developed theoretical proof for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties and to introduce adjustable parameters for control design along with the SMC method. It leads to a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1. Furthermore, it is theoretically proved that the proposed method with the SVD and adjustable parameters is less conservatism than the method without the SVD. The paper is mainly to provide all strict theoretical proofs for the method and results.
基金supported by the National Natural Science Foundation of China(61773387)the China Postdoctoral Fund(2016M5909712017T100770)。
文摘A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.
文摘This paper studies the distributed synchronization control problem of a class of stochastic dynamical systems with time-varying delays and random noise via randomly occurring control. The activation of the distributed adaptive controller and the update of the control gain designed in this paper all happen randomly. Based on the Lyapunov stability theory, LaSalle invariance principle, combined with the use of the properties of the matrix Kronecker product, stochastic differential equation theory and other related tools, by constructing the appropriate Lyapunov functional, the criterion for the distributed synchronization of this type of stochastic complex networks in mean square is obtained.
基金supported by the National Natural Science Foundation of China (Grant No. 60874113)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200802550007)+3 种基金the Key Foundation Project of Shanghai,China(Grant No. 09JC1400700)the Key Creative Project of Shanghai Education Community,China (Grant No. 09ZZ66)the National Basic Research Development Program of China (Grant No. 2010CB731400)the Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No. PolyU 5212/07E)
文摘In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.
基金supported by the National Natural Science Foundation of China(10971232)the Natural Science Foundation of Guangdong Province(101510090010000398351009001000002)
文摘The problems of robust exponential stability in mean square and delayed state feedback stabilization for uncertain stochastic systems with time-varying delay are studied. By using Jensen's integral inequality and combining with the free weighting matrix approach, new delay-dependent stability conditions and delayed state feedback stabilization criteria are obtained in terms of linear matrix inequalities. Meanwhile, the proposed delayed state feedback stabilization criteria are more convenient in application than the existing ones since fewer tuning parameters are involved. Numerical examples are given to illustrate the effectiveness of the proposed methods.
基金supported in part by the National Natural Science Foundation of China (60874045 60904030)+1 种基金the Foundation of the Education Bureau of Jiangsu Province (09KJB510019)the Natural Science Foundation of Jiangsu Province (BK2009184)
文摘A robust dissipative control problem for a class of It-type stochastic systems is discussed with Markovian jumping parameters and time-varying delay. A memoryless state feedback dissipative controller is developed based on Lyapunov-Krasovskii functional approach such that the closed-loop system is robustly stochastically stable and weakly delay-dependent (RSSWDD) and strictly (Q, S, R)-dissipative. The sufficient condition on the existence of state feedback dissipative controller is presented by linear matrix inequality (LMI). And the desired controller can be concluded as solving a set of LMI. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.
基金Project supported by the Fund from the Department of Science and Technology(DST)(Grant No.SR/FTP/MS-039/2011)
文摘In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturbance, interval time-varying,and distributed delay. The aim is to design a delay-dependent robust H∞control which ensures the robust asymptotic stability of the given system and to express it in the form of linear matrix inequalities(LMIs). Numerical examples are given to demonstrate the effectiveness of the proposed method. The results are also compared with the existing results to show its conservativeness.