Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combi...Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combining the Woods–Saxon(WS) model and the improved piecewise bistable model. The model retains the characteristics of the independent parameters of WS model and the improved piecewise model has no output saturation, all the parameters in the new model have no coupling characteristics. Under α stable noise environment, the new model is used to detect periodic signal and aperiodic signal, the detection results indicate that the new model has higher noise utilization and better detection effect.Finally, the new model is applied to image denoising, the results showed that under the same conditions, the output peak signal-to-noise ratio(PSNR) and the correlation number of NCSR method is higher than that of other commonly used linear denoising methods and improved piecewise SR methods, the effectiveness of the new model is verified.展开更多
In recent years,image processing based on stochastic resonance(SR)has received more and more attention.In this paper,a new model combining dynamical saturating nonlinearity with regularized variational term for enhanc...In recent years,image processing based on stochastic resonance(SR)has received more and more attention.In this paper,a new model combining dynamical saturating nonlinearity with regularized variational term for enhancement of low contrast image is proposed.The regularized variational term can be setting to total variation(TV),second order total generalized variation(TGV)and non-local means(NLM)in order to gradually suppress noise in the process of solving the model.In addition,the new model is tested on a mass of gray-scale images from standard test image and low contrast indoor color images from Low-Light dataset(LOL).By comparing the new model and other traditional image enhancement models,the results demonstrate the enhanced image not only obtain good perceptual quality but also get more excellent value of evaluation index compared with some previous methods.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.62371388)the Key Research and Development Projects in Shaanxi Province,China (Grant No.2023-YBGY-044)。
文摘Aiming at the problem that the intermediate potential part of the traditional bistable stochastic resonance model cannot be adjusted independently, a new composite stochastic resonance(NCSR) model is proposed by combining the Woods–Saxon(WS) model and the improved piecewise bistable model. The model retains the characteristics of the independent parameters of WS model and the improved piecewise model has no output saturation, all the parameters in the new model have no coupling characteristics. Under α stable noise environment, the new model is used to detect periodic signal and aperiodic signal, the detection results indicate that the new model has higher noise utilization and better detection effect.Finally, the new model is applied to image denoising, the results showed that under the same conditions, the output peak signal-to-noise ratio(PSNR) and the correlation number of NCSR method is higher than that of other commonly used linear denoising methods and improved piecewise SR methods, the effectiveness of the new model is verified.
基金supported by the National Natural Science Foundation of China under Grant Nos. 61501276,61772294 and 61973179the China Postdoctoral Science Foundation under Grant No. 2016M592139the Qingdao Postdoctoral Applied Research Project under Grant No. 2015120
文摘In recent years,image processing based on stochastic resonance(SR)has received more and more attention.In this paper,a new model combining dynamical saturating nonlinearity with regularized variational term for enhancement of low contrast image is proposed.The regularized variational term can be setting to total variation(TV),second order total generalized variation(TGV)and non-local means(NLM)in order to gradually suppress noise in the process of solving the model.In addition,the new model is tested on a mass of gray-scale images from standard test image and low contrast indoor color images from Low-Light dataset(LOL).By comparing the new model and other traditional image enhancement models,the results demonstrate the enhanced image not only obtain good perceptual quality but also get more excellent value of evaluation index compared with some previous methods.