期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于Manhattan距离与随机邻域嵌入的故障特征提取算法 被引量:8
1
作者 柯佳佳 胡建中 《计算机应用研究》 CSCD 北大核心 2015年第10期2992-2995,共4页
随机邻域嵌入(stochastic neighbor embedding,SNE)算法在欧氏距离基础上定义了邻域概率函数,是一种基于数据间相似度的降维方法。针对欧氏距离在高维数据空间中不能提供较大的相对距离差、无法明显体现高维数据对象之间差异性的问题,... 随机邻域嵌入(stochastic neighbor embedding,SNE)算法在欧氏距离基础上定义了邻域概率函数,是一种基于数据间相似度的降维方法。针对欧氏距离在高维数据空间中不能提供较大的相对距离差、无法明显体现高维数据对象之间差异性的问题,提出一种基于Manhattan距离的随机邻域嵌入(Manhattan-SNE)算法。采用Manhattan距离衡量高维数据对象之间的相异度,得到高维空间和低维空间数据对象之间相似度的条件概率,嵌入目标是使得高维空间和低维空间的分布形式尽可能一致,选择KL散度作为算法的目标函数,通过梯度下降法寻找目标函数的最小值,从而得到算法的低维嵌入。测试与实验分析结果表明:所提算法的平均分类正确率有明显提高,证明了改进算法的有效性与实用性,可以用于故障数据的特征提取。 展开更多
关键词 随机邻域嵌入 欧氏距离 Manhattan距离 故障特征提取
下载PDF
基于t-SNE降维和BIRCH聚类的单相用户相位及表箱辨识 被引量:44
2
作者 连子宽 姚力 +4 位作者 刘晟源 余允涛 唐小淇 杨莉 林振智 《电力系统自动化》 EI CSCD 北大核心 2020年第8期176-184,共9页
低压台区单相用户的相位及接入表箱信息的准确性对户变关系纠错和线损治理分析有重要影响。目前,拓扑档案的校验主要依靠电力员工现场排查,人力物力消耗大且排查效率低下。因此,亟需一种效率较高的低压台区拓扑档案校验方法。在此背景下... 低压台区单相用户的相位及接入表箱信息的准确性对户变关系纠错和线损治理分析有重要影响。目前,拓扑档案的校验主要依靠电力员工现场排查,人力物力消耗大且排查效率低下。因此,亟需一种效率较高的低压台区拓扑档案校验方法。在此背景下,文中提出了一种基于智能电表电压数据的低压台区单相用户相位及接入表箱辨识方法,可以为低压台区的拓扑辨识及排查提供参考。首先,采用t分布的随机近邻嵌入(t-SNE)技术对原始负荷数据进行降维处理,解决台区用户原始负荷特征维度过高带来的冗余性问题;接着,应用BIRCH方法对降维后的负荷数据进行聚类,实现台区下单相用户所属相位和接入表箱的辨识。最后,以浙江省海宁市某台区为例进行验证,算例分析的结果表明所提模型具有可行性和有效性。 展开更多
关键词 低压台区 t分布的随机近邻嵌入 BIRCH聚类 接入表箱辨识 相位辨识
下载PDF
基于T-SNE样本熵和TCN的滚动轴承状态退化趋势预测 被引量:31
3
作者 于重重 宁亚倩 +1 位作者 秦勇 高柯柯 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第8期39-46,共8页
为了能够尽早发现滚动轴承开始出现显著退化的临界状态,精准预测滚动轴承的状态退化趋势,提出了T-分布随机近邻嵌入(T-SNE)样本熵状态退化特征指标和基于时间卷积网络(TCN)的轴承状态退化趋势预测方法。首先利用T-SNE算法提取原始振动... 为了能够尽早发现滚动轴承开始出现显著退化的临界状态,精准预测滚动轴承的状态退化趋势,提出了T-分布随机近邻嵌入(T-SNE)样本熵状态退化特征指标和基于时间卷积网络(TCN)的轴承状态退化趋势预测方法。首先利用T-SNE算法提取原始振动信号的低维流形特征,再计算低维流形特征的样本熵作为状态退化特征,最后基于历史状态退化特征通过TCN算法预测轴承的状态退化趋势。实验结果表明,相较于传统特征指标,T-SNE样本熵特征指标能够至少提前50 min发现滚动轴承开始出现显著退化的临界状态,且TCN算法的预测误差仅为0. 45%,具有较高的工程应用价值。 展开更多
关键词 T-分布随机近邻嵌入 样本熵 时间卷积网络 滚动轴承 状态退化趋势预测
下载PDF
基于卷积神经网络的交直流输电系统故障诊断 被引量:21
4
作者 张大海 张晓炜 +1 位作者 孙浩 和敬涵 《电力系统自动化》 EI CSCD 北大核心 2022年第5期132-140,共9页
随着交直流输电系统规模的不断扩大,电网结构和故障特征愈加复杂,现有故障诊断方法面对复杂电网和超大数据量时难以精准提取故障特征,急需适应性强且准确率高的电网故障诊断方法。为此提出一种基于卷积神经网络(CNN)的电网故障诊断方法... 随着交直流输电系统规模的不断扩大,电网结构和故障特征愈加复杂,现有故障诊断方法面对复杂电网和超大数据量时难以精准提取故障特征,急需适应性强且准确率高的电网故障诊断方法。为此提出一种基于卷积神经网络(CNN)的电网故障诊断方法。首先,通过逐层筛选、逐层增叠的网络构造方式逐步测试,其目的是为了构建充分适应于电网故障诊断的网络结构;然后,利用网络层级优化策略调整训练参数,并以交叉熵最小为目标对深层故障特征进行挖掘;最后,在MATLAB/Simulink平台上搭建交直流输电系统模型,结合t分布随机邻域嵌入(t-SNE)可解释性技术展示诊断效果,通过与传统方法对比证明所提方法能够深度挖掘故障特征且具备很高的诊断准确率。 展开更多
关键词 深度学习 卷积神经网络 交直流输电系统 故障诊断 t分布随机邻域嵌入
下载PDF
基于多尺度时不可逆与t-SNE流形学习的滚动轴承故障诊断 被引量:16
5
作者 姜战伟 郑近德 +1 位作者 潘海洋 潘紫微 《振动与冲击》 EI CSCD 北大核心 2017年第17期61-68,84,共9页
为了精确地提取机械振动信号的非线性故障特征,提出了一种新的振动信号复杂性测量方法——多尺度时不可逆。同时结合t-分布邻域嵌入(t-SNE)流形学习和粒子群优化-支持向量机(PSO-SVM),提出了一种新的滚动轴承故障诊断方法。采用多尺度... 为了精确地提取机械振动信号的非线性故障特征,提出了一种新的振动信号复杂性测量方法——多尺度时不可逆。同时结合t-分布邻域嵌入(t-SNE)流形学习和粒子群优化-支持向量机(PSO-SVM),提出了一种新的滚动轴承故障诊断方法。采用多尺度时不可逆提取复杂振动信号的特征信息;利用t-SNE对高维特征空间进行降维;将低维特征向量输入到基于PSO-SVM多故障模式分类器中进行识别与诊断。将提出的方法应用于试验数据分析,并与现有方法进行了对比,分析结果表明,该方法不仅能够有效地诊断滚动轴承的工作状态和故障类型,而且优于现有方法。 展开更多
关键词 多尺度时不可逆 t-分布邻域嵌入 支持向量机 滚动轴承 故障诊断
下载PDF
基于电压和功率数据的低压用户相别识别优化建模与应用 被引量:13
6
作者 罗钧腾 章坚民 +3 位作者 姚力 倪琳娜 章江铭 余焕雷 《电力系统自动化》 EI CSCD 北大核心 2021年第7期123-131,共9页
低压用户相别识别是低压配电网计量拓扑识别的内容之一。首先,描述原问题并对已有研究进行回顾,阐述文中研究特点;按照线路分叉点数量将用户降维到虚拟用户空间;再对虚拟用户空间电压波形采用t分布的随机近邻嵌入(t-SNE)算法,形成进一... 低压用户相别识别是低压配电网计量拓扑识别的内容之一。首先,描述原问题并对已有研究进行回顾,阐述文中研究特点;按照线路分叉点数量将用户降维到虚拟用户空间;再对虚拟用户空间电压波形采用t分布的随机近邻嵌入(t-SNE)算法,形成进一步降维的特征空间;对于特征空间的电压波形以及聚合功率,提出同时考虑功率平衡和电压时序波形分类的多目标优化模型,使用仅考虑功率平衡的优化问题的解作为初始解。选择2个具有典型特征的城镇居民台区作为试点,发现常见的5类聚类方法均只有1个台区识别成功,且表现差异很大,而所提方法在2个案例中均取得成功,表明其具有一定的稳定性和通用性。 展开更多
关键词 低压配电网 相别识别 电压波形相似 功率平衡 聚类 t分布的随机近邻嵌入 遗传算法
下载PDF
基于改进t-SNE和RBFNN的柴油机故障诊断 被引量:6
7
作者 尚前明 黄兴烨 +3 位作者 沈栋 朱仁杰 胡秋芳 邱天 《船舶工程》 CSCD 北大核心 2023年第1期91-97,共7页
针对柴油机故障诊断问题,提出一种基于改进t分布的随机邻域嵌入(t-SNE)和径向基函数神经网络(RBFNN)的柴油机故障诊断方法。针对t-SNE算法对振动信号的实际降维效果不够理想的问题,进行自适应加权优化;引入遗传算法(GA)解决果蝇优化算法... 针对柴油机故障诊断问题,提出一种基于改进t分布的随机邻域嵌入(t-SNE)和径向基函数神经网络(RBFNN)的柴油机故障诊断方法。针对t-SNE算法对振动信号的实际降维效果不够理想的问题,进行自适应加权优化;引入遗传算法(GA)解决果蝇优化算法(FOA)陷入局部最优的问题,将GA-FOA应用于RBFNN参数选取中;采用改进后的RBFNN模型对经自适应加权t-SNE降维的数据进行故障识别。研究结果表明,改进后的算法能明显改善聚类效果,提高故障识别的正确率,具有良好的应用前景。 展开更多
关键词 柴油机 振动信号 故障诊断 t分布的随机邻域嵌入(t-sne) 径向基函数神经网络(RBFNN)
原文传递
基于t分布随机近邻嵌入的测井数据降维方法研究 被引量:4
8
作者 邓力珲 曹丽 张俊杰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第4期549-553,569,共6页
测井数据具有多维、多类、多量等显著特征,是测井资料地质解释工作的重要依据。针对测井数据处理过程中的多维度、非线性问题,文章应用流形学习思想进行测井数据降维,提出基于t分布随机近邻嵌入(t-distributed stochastic neighbor embe... 测井数据具有多维、多类、多量等显著特征,是测井资料地质解释工作的重要依据。针对测井数据处理过程中的多维度、非线性问题,文章应用流形学习思想进行测井数据降维,提出基于t分布随机近邻嵌入(t-distributed stochastic neighbor embedding,t-SNE)算法的测井数据解释模型:首先对测井数据进行预处理,并通过计算KL散度优选最佳维数,进而运用t-SNE算法将高维测井数据嵌入到低维空间;再结合支持向量机(support vector machine,SVM),构建t-SNE-SVM岩性解释模型,实现高维测井数据的非线性随机降维和岩性智能识别。实验结果表明,与传统的PCA等线性降维方法相比,经过t-SNE算法处理后的测井数据明显分为3类,进而有效地提高了t-SNE-SVM模型的透明度及可解释性。 展开更多
关键词 测井数据 非线性降维 t-sne t-sne-SVM 岩性识别
下载PDF
t-SNE最大化的自适应彩色图像灰度化方法
9
作者 谢斌 徐燕 +2 位作者 王冠超 杨舒敏 李燕伟 《中国图象图形学报》 CSCD 北大核心 2024年第8期2333-2349,共17页
目的 彩色图像的灰度化是计算机视觉领域的研究热点。针对传统彩色图像灰度化方法得到的灰度图像存在对比度保持不足、细节模糊及层次感欠缺等问题,本文结合t分布随机邻域嵌入(t-distributed stochastic neighbor embedding,t-SNE)提出... 目的 彩色图像的灰度化是计算机视觉领域的研究热点。针对传统彩色图像灰度化方法得到的灰度图像存在对比度保持不足、细节模糊及层次感欠缺等问题,本文结合t分布随机邻域嵌入(t-distributed stochastic neighbor embedding,t-SNE)提出了一种更加简单、高效的彩色图像灰度化新方法。方法 首先,将t-SNE降维思想引入到彩色图像的灰度化过程中,设计了一种基于t-SNE最大化的彩色图像灰度化新模型,通过最大化能量函数使原始彩色图像中对比度较小的区域在灰度化后其对比度能够适当地变大或保持,让灰度图像更好地保持原始彩色图像的对比度特征和层次感。其次,在新模型中设计了一种自适应的对比度保持策略,根据颜色对比度信息来自适应地调节原始彩色图像不同区域的灰度化力度,更好地保留原始彩色图像的细节和对比度信息。最后,采用了一种高效的离散搜索方法以快速求解所提新模型。结果 基于Cadik、CSDD(complex scene decolorization dataset)和Color250数据集的大量实验结果表明,与传统方法相比,本文方法得到的灰度图像具有更好的表现,在颜色对比度保持率(color contrast preserving ratio, CCPR)指标上,本文方法在上述3个数据集上的平均CCPR值最高,分别为0.874、0.862和0.864。另外,在相同硬件上测试不同灰度化方法的运行效率时,本文方法的运行时间最短。结论 相较于传统灰度化方法,本文方法不仅能够更好地保持原始彩色图像的对比度、细节特征和层次感,而且在主观评价和客观评价方面均有更好的表现。 展开更多
关键词 彩色图像灰度化 t分布随机邻域嵌入(t-sne) 对比度保持 离散搜索 细节保持
原文传递
不同香型烤烟中Amadori化合物测定及多元统计分析 被引量:6
10
作者 马立超 李登科 +7 位作者 张春涛 于洁 魏鹏程 田志章 许峰 吴若昕 邢立霞 田楠 《烟草科技》 CAS CSCD 北大核心 2021年第7期59-69,共11页
采用液相色谱-串联质谱(LC-MS/MS)法快速测定了烤烟中11种Amadori化合物,并结合主成分分析(PCA)、层次聚类热力图分析(HCHMA)及t分布随机邻域嵌入(t-SNE)等多元统计分析方法,研究Amadori化合物与烤烟香型的关系。结果表明:①目标化合物... 采用液相色谱-串联质谱(LC-MS/MS)法快速测定了烤烟中11种Amadori化合物,并结合主成分分析(PCA)、层次聚类热力图分析(HCHMA)及t分布随机邻域嵌入(t-SNE)等多元统计分析方法,研究Amadori化合物与烤烟香型的关系。结果表明:①目标化合物的线性关系良好(r>0.995);检出限(LODs)为1.0~10.0 ng/mL;日内和日间精密度(RSDs)分别为1.1%~4.8%和2.9%~9.6%(n=6);回收率为87.8%~110.2%。②PCA和t-SNE分析结果表明不同香型烤烟具有明显的分类趋势,其中t-SNE分析的区分效果更明显;HCHMA将样品划分为8类,与香型和产地对应较好。③Amadori化合物测定结果结合多元统计分析方法,可为烤烟香型和产地分析、烟叶品质评价、配方设计优化提供技术支持。 展开更多
关键词 烤烟 香型 AMADORI化合物 液相色谱-串联质谱(LC-MS/MS) 主成分分析(PCA) 层次聚类热力图分析(HCHMA) t分布随机邻域嵌入(t-sne)
下载PDF
基于融合特征t-SNE降维的控制图质量异常模式识别
11
作者 王宁 郭梓昱 +1 位作者 田淑珂 李可雨阳 《系统工程理论与实践》 EI CSCD 北大核心 2024年第7期2381-2393,共13页
为解决控制图质量异常模式识别中,实时质量数据呈现出高维非线性等复杂特征导致模型过拟合以及失真等问题,提出一种基于融合特征t分布随机近邻嵌入(t-distributed stochastic neighbor embedding, t-SNE)降维的控制图质量异常模式识别方... 为解决控制图质量异常模式识别中,实时质量数据呈现出高维非线性等复杂特征导致模型过拟合以及失真等问题,提出一种基于融合特征t分布随机近邻嵌入(t-distributed stochastic neighbor embedding, t-SNE)降维的控制图质量异常模式识别方法.首先,从生产过程动态数据流中提取其统计特征、形状特征并与原始特征进行融合,形成动态数据流的高维融合特征;然后利用t-SNE算法对融合特征进行降维, t-SNE算法能够有效地处理线性和非线性数据,并产生更有意义的聚类;进而利用一维卷积神经网络(one-dimensional convolutional neural networks, 1DCNN)作为分类器实现复杂产品制造过程的质量异常模式识别;最后,通过仿真实验将本文所提方法与单一类型特征方法、融合特征方法以及融合特征主成分分析法(principal component analysis, PCA)、核主成分分析(kernel PCA, KPCA)和局部线性嵌入算法(locally linear embedding, LLE)降维方法的识别模型进行比较,并利用锂离子电池极片制造过程为例进一步说明本文模型的有效性与实用性.仿真与实例结果表明,本文所提算法具有更高的识别效率和精度,特别适用于处理在复杂产品制造过程背景下的高维非线性数据. 展开更多
关键词 控制图 模式识别 复杂产品制造过程 t分布随机近邻嵌入(t-sne) 卷积神经网络(CNN)
原文传递
特征选择与t-SNE结合的滚动轴承故障诊断 被引量:2
12
作者 殷秀丽 谢丽蓉 +1 位作者 杨欢 段智峰 《机械科学与技术》 CSCD 北大核心 2023年第11期1784-1793,共10页
为准确识别滚动轴承当前故障状态,提出一种集合经验模态分解(EEMD)、特征选择与t-分布邻域嵌入(t-SNE)的诊断方法。采用EEMD分解故障信号获得若干本征模态函数(IMF),采用峭度准则筛选有效IMF分量并重构;求出重构信号的高维时、频域特征... 为准确识别滚动轴承当前故障状态,提出一种集合经验模态分解(EEMD)、特征选择与t-分布邻域嵌入(t-SNE)的诊断方法。采用EEMD分解故障信号获得若干本征模态函数(IMF),采用峭度准则筛选有效IMF分量并重构;求出重构信号的高维时、频域特征矩阵并对其归一化,采用t-SNE算法获得对故障状态更敏感的低维特征矩阵;将特征矩阵输入粒子群优化的最小二乘支持向量机(LSSVM)中,实现轴承的故障识别与诊断。采用实验分析并对比几种典型的降维法,证明了t-SNE的优越性,所提方法可以实现故障状态的100%识别,验证了该方法的有效性。 展开更多
关键词 故障诊断 集合经验模态分解 特征选择 t-分布邻域嵌入
下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法
13
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
下载PDF
基于改进CEEMDAN和t-SNE的故障特征提取方法 被引量:1
14
作者 郑惠萍 王卓 +3 位作者 彭立强 秦志英 赵月静 裴春兴 《机床与液压》 北大核心 2023年第19期216-222,共7页
针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传... 针对非线性、非稳定振动信号难以提取有效故障特征的问题,提出一种基于改进自适应噪声完备集合经验模态分解(CEEMDAN)和t-分布随机邻域嵌入(t-SNE)算法相结合的故障特征提取方法。利用三次Hermite插值代替三次样条插值构造包络线,提高传统CEEMDAN对非平稳信号的分解精度;利用改进后的CEEMDAN对原始信号分解并通过相关系数筛选出有效固有模态分量(IMF),提取有效IMF分量的时频特征、奇异值和能量值构建高维混合域特征集;最后,通过t-SNE算法挖掘高维混合域特征信息得到低维敏感特征,并将其输入到支持向量机中进行分类,以分类准确率作为特征提取效果评价指标。在齿轮箱故障模拟实验台进行实验验证,结果表明该方法能够准确地提取故障特征,为故障特征提取提供新思路。 展开更多
关键词 Hermite插值法 自适应噪声完备集合经验模态分解 t-分布随机邻域嵌入 故障特征提取
下载PDF
基于集成精细复合多元多尺度模糊熵的齿轮箱故障诊断 被引量:1
15
作者 杨小强 宫建成 +1 位作者 安立周 刘晓明 《机电工程》 CAS 北大核心 2023年第3期335-343,共9页
针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模... 针对齿轮箱故障信号具有非线性和非平稳性的特点,且目前的方法对其特征提取不够充分这一问题,对不同形式粗粒化方法的集成、多通道信号处理方法在模糊熵算法上的应用进行了研究,提出了一种新的特征提取方法,即集成精细复合多元多尺度模糊熵(ERCmvMFE)算法,在此基础上,结合t分布随机邻域嵌入(t-SNE)和人工鱼群算法优化的核极限学习机(AFSA-KELM),提出了一种新的齿轮箱故障综合诊断方法。首先,采用多种形式粗粒化方法的集成方法以及多通道信号处理方法,对模糊熵算法进行了改进,并进行了齿轮箱故障的初始特征提取;然后,通过t-SNE压缩原始故障特征,实现了维数的约简,并将低维故障特征输入至AFSA-KELM中进行了故障的分类识别;最后,为了对ERCmvMFE方法的特征提取性能进行测试,采用QPZZ-II旋转机械故障模拟测试平台进行了相关的实验。实验结果表明:采用新的齿轮箱故障综合诊断方法能够对不同类型的齿轮箱故障进行可靠诊断,对齿轮箱5种工况下的20次识别实验中,获得的平均准确率可达98.92%,标准差为0.956,识别准确率和稳定性均优于其他对比方法。研究结果表明:采用ERCmvMFE算法能够更充分地提取出齿轮箱的故障特征,因此,基于该特征提取方法的故障诊断方法具有更高的齿轮箱故障识别准确率。 展开更多
关键词 集成精细复合多元多尺度模糊熵 人工鱼群算法优化的核极限学习机 t分布随机邻域嵌入 特征提取 多粗粒化处理 多通道信号处理 故障分类识别
下载PDF
基于空间坐标与振动特征融合的机床切削状态分类方法 被引量:1
16
作者 王晶 程晓斌 +2 位作者 高艳 王勋 杨军 《振动与冲击》 EI CSCD 北大核心 2022年第23期249-256,306,共9页
t分布的随机邻域嵌入(t-distributed stochastic neighbor embedding, t-SNE)常被用作机床切削状态分类中的特征选择方法,以学习切削参数之间的潜在关系。为了提高切削状态分类的精度,融合振动信号特征与切削激励点的空间坐标,提出了空... t分布的随机邻域嵌入(t-distributed stochastic neighbor embedding, t-SNE)常被用作机床切削状态分类中的特征选择方法,以学习切削参数之间的潜在关系。为了提高切削状态分类的精度,融合振动信号特征与切削激励点的空间坐标,提出了空间坐标嵌入的t分布的随机邻域嵌入方法(spatial coordinate embedded t-SNE, Ct-SNE)。该方法采用振动信号构建高维特征空间,将空间坐标作为物理信息嵌入至特征空间,以优选出类内相似度高、类间差异性大的特征。试验采集了三轴立式铣床加工的数据,对比了传统t-SNE方法与Ct-SNE方法的可视化结果和切削状态分类的准确性。结果表明,与传统方法相比,切削激励点的空间坐标的引入可以提高振动特征的可区分度,显著提升切削状态分类的准确率。 展开更多
关键词 状态监测 t分布的随机邻域嵌入 特征选择 振动监测 空间坐标
下载PDF
基于WPT和t-SNE的直升机桨叶损伤特征提取 被引量:2
17
作者 曲怡霖 陈仁文 +1 位作者 吕宏政 叶杨 《传感器世界》 2019年第9期7-13,共7页
旋翼桨叶的损坏可能会导致直升机坠落损毁,开展桨叶健康状态的在线监测评估对保障飞行安全至关重要。提出一种将小波包变换(WPT)与t-分布随机近邻嵌入(t-SNE)相结合的桨叶损伤识别方法。首先利用振动台模拟直升机服役时的真实振动,用传... 旋翼桨叶的损坏可能会导致直升机坠落损毁,开展桨叶健康状态的在线监测评估对保障飞行安全至关重要。提出一种将小波包变换(WPT)与t-分布随机近邻嵌入(t-SNE)相结合的桨叶损伤识别方法。首先利用振动台模拟直升机服役时的真实振动,用传感器获取不同故障桨叶模型在振动环境下的输出响应。然后对信号进行小波包分解,提取小波包能量作为原始特征向量,接着用流形学习对特征向量进行维数约简,最后输入到K近邻分类器进行故障识别。实验结果表明:首先,在原始特征选取方面,小波包能量特征优于时域特征与小波包能量组合成的混合特征;其次,t-SNE的降维效果优于PCA、Sammon映射、LTSA、HLLE、SNE这5种方法,且不受嵌入维数的制约。研究结果证明了所提出的方法能提高桨叶损伤评估的准确性。 展开更多
关键词 小波包能量 t-分布随机近邻嵌入 流形学习 损伤识别 直升机桨叶
下载PDF
基于双向长短期记忆网络的电力系统暂态稳定评估 被引量:53
18
作者 孙黎霞 白景涛 +1 位作者 周照宇 赵晨昀 《电力系统自动化》 EI CSCD 北大核心 2020年第13期64-72,共9页
为进一步提升电力系统暂态稳定评估的准确率,依据电力系统暂态过程数据的时序特性,建立了一种基于双向长短期记忆(Bi-LSTM)网络的暂态稳定评估模型。该方法通过Bi-LSTM网络建立底层量测数据与电力系统暂态稳定类别之间的非线性映射关系... 为进一步提升电力系统暂态稳定评估的准确率,依据电力系统暂态过程数据的时序特性,建立了一种基于双向长短期记忆(Bi-LSTM)网络的暂态稳定评估模型。该方法通过Bi-LSTM网络建立底层量测数据与电力系统暂态稳定类别之间的非线性映射关系,采用准确率、F1指标和FPR指标综合评估Bi-LSTM网络模型性能的优劣,在此基础上,采用t分布随机近邻嵌入(t-SNE)降维方法和k最近邻(KNN)分类器进一步提升暂态稳定评估的准确率。新英格兰10机39节点系统算例表明:所提模型比传统的机器学习模型和部分深度学习模型拥有更好的评估性能。通过可视化方法和网络预测分数对评估模型进行分析,结果表明Bi-LSTM网络模型具有较强的电力系统暂态过程特征提取能力,适用于电力系统暂态稳定性的评估。进一步研究了底层输入数据的归一化模式和方法对暂态评估模型的影响,结果表明z-score归一化方法要优于min-max归一化方法,采用总维数归一化模式的模型评估性能更好。 展开更多
关键词 深度学习 长短期记忆网络 暂态稳定评估 归一化 t分布随机近邻嵌入 k最近邻
下载PDF
基于t-SNE的多参数岩体结构面分步聚类方法
19
作者 李新正 王述红 +1 位作者 侯钦宽 董福瑞 《岩土力学》 EI CAS CSCD 北大核心 2024年第5期1540-1550,共11页
结构面聚类是进行岩体稳定性评价的重要步骤。常用聚类方法多以产状作为分组依据,忽略了结构面物理特性指标对岩体稳定性的影响。针对分组依据单一化的不足,综合考虑结构面倾向、倾角、迹长、张开度、填充状态和粗糙度的影响,提出一种... 结构面聚类是进行岩体稳定性评价的重要步骤。常用聚类方法多以产状作为分组依据,忽略了结构面物理特性指标对岩体稳定性的影响。针对分组依据单一化的不足,综合考虑结构面倾向、倾角、迹长、张开度、填充状态和粗糙度的影响,提出一种基于学生分布随机邻近嵌入(student-distributed stochastic neighbor embedding,简称t-SNE)的多参数岩体结构面分步聚类方法。首先,利用t-SNE算法对除产状外的结构面特征进行数据降维;进而利用模拟退火算法搜索K-means算法的全局最优初始值,并采用分步聚类思想完成聚类。研究表明:所提方法有效地解决了高维空间样本稀疏的问题,同时保留了数据的局部结构与全局结构。新方法相比于传统方法能对空间分布相似区内结构面的物理特性进行精确划分,分组精度更高,且在避免复杂权重值计算的条件下,能有效区分产状与物理特性参数对岩体稳定性的影响差异。最后,将所提方法应用于中国新疆某露天矿坡结构面实测数据分析中,所得分组结果合理可靠,进一步证明该方法在实际工程中的有效性。研究方法可为多参数岩体结构面的分步聚类提供参考。 展开更多
关键词 岩体结构面 多参数 分步聚类 t-sne K-MEANS算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部