It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip ...It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of sli展开更多
This paper considers the problem of reliable control for continuous-time systems with interval time-varying delay. By introducing a random matrix, a new practical actuator fault model is established. Using the Lyapuno...This paper considers the problem of reliable control for continuous-time systems with interval time-varying delay. By introducing a random matrix, a new practical actuator fault model is established. Using the Lyapunov-Krasovskii approach, a sufficient condition for the existence of reliable controller is expressed by a linear matrix inequality(LMI). An illustrative example is exploited to show the effectiveness, of the proposed design procedures.展开更多
The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data.In this study,a stochastic finite-fault ground motion model was adopt...The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data.In this study,a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China,based on parameters derived from small and medium earthquakes that have occurred in the region.From these,the response spectra was estimated.A set of ground motion attenuation relationships was then developed based on simulated peak ground motions and response spectral parameters through regression,which would be applicable for use in engineering practice.Through comparisons,it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.展开更多
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-19)
文摘It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of sli
基金supported by the National Natural Science Foundation of China (No. 60904013, 60974029)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 10KJB510007)
文摘This paper considers the problem of reliable control for continuous-time systems with interval time-varying delay. By introducing a random matrix, a new practical actuator fault model is established. Using the Lyapunov-Krasovskii approach, a sufficient condition for the existence of reliable controller is expressed by a linear matrix inequality(LMI). An illustrative example is exploited to show the effectiveness, of the proposed design procedures.
基金Hong Kong Polytechnic University Under Grant No.1.30.56.A226
文摘The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data.In this study,a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China,based on parameters derived from small and medium earthquakes that have occurred in the region.From these,the response spectra was estimated.A set of ground motion attenuation relationships was then developed based on simulated peak ground motions and response spectral parameters through regression,which would be applicable for use in engineering practice.Through comparisons,it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.