Effects of dietary supplementation of chitosan-oligosaccharides (COS) on the growth performance, immune response, stress resistance, and disease resistance of juvenile rainbow trout Oncorhynchus mykiss were studied....Effects of dietary supplementation of chitosan-oligosaccharides (COS) on the growth performance, immune response, stress resistance, and disease resistance of juvenile rainbow trout Oncorhynchus mykiss were studied. Four experimental diets containing 0, 20, 40, or 60 mg/kg COS (COSO, COS20, COS40, and COS60, respectively) were fed to juvenile rainbow trout (initial weight = 5.2 ± 0.3 g) for 8 weeks. By the end of the feeding trial, representative groups of fish from each dietary treatment were challenged with stressor (30 see air exposure) and pathogen exposure (intraperitoneal injection with Aeromonas hydrophila ). Results showed that supplementation of COS in diets did not affect production performance and body composition of rainbow trout. However, fish fed the COS40 diet demonstrated improved phagocytic activities, respiratory burst activities and decreased serum cortisol level. Additionally, survival following A. hydrophila challenge was significant higher among fish fed the COS-supplemented feeds, although there was no difference based on the level of supplementation. The present study suggests that COS can be used as an immuno-stimulant in rainbow trout feeds展开更多
Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, affecting more than 350 million people worldwide. The interferon (IFN)-mediated innate immune responses could restrict HBV replication at...Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, affecting more than 350 million people worldwide. The interferon (IFN)-mediated innate immune responses could restrict HBV replication at the different steps of viral life cycle. Indeed, IFN-α has been successfully used for treatment of patients with chronic hepatitis B. However, the role of the innate immune response in HBV replication and the mechanism of the anti-HBV effect of IFN-α are not completely explored. In this review, we summarized the currently available knowledge about the IFN-mediated anti-HBV effect in the HBV life cycle and the possible effectors downstream the IFN signaling pathway. The antiviral effect of Toll-like receptors (TLRs) in HBV replication is briefly discussed. The strategies exploited by HBV to evade the IFN- and TLR-mediated antiviral actions are summarized.展开更多
As one of the most serious threats to human being,cancer is hard to be treated when metastasis happens.What’s worse,there are few identified targets of metastasis for drug development.Therefore,it is important to dev...As one of the most serious threats to human being,cancer is hard to be treated when metastasis happens.What’s worse,there are few identified targets of metastasis for drug development.Therefore,it is important to develop strategies to prevent metastasis or treat existed metastasis.This review focuses on the procedure of metastasis,and first summarizes the targeting delivery strategies,including primary tumor targeting drug delivery,tumor metastasis targeting drug delivery and hijacking circulation cells.Then,as a promising treatment,the application of immunotherapy in tumor metastasis treatment is introduced,and strategies that stimulating immune response are reviewed,including chemotherapy,photothermal therapy,photodynamic therapy,ferroptosis,sonodynamic therapy,and nanovaccines.Finally,the challenges and perspective about nanoparticle-enabled tumor metastasis treatment are discussed.展开更多
Astrocytes and microglia play an orchestrated role following spinal cord injury;however,the molecular mechanisms through which microglia regulate astrocytes after spinal cord injury are not yet fully understood.Herein...Astrocytes and microglia play an orchestrated role following spinal cord injury;however,the molecular mechanisms through which microglia regulate astrocytes after spinal cord injury are not yet fully understood.Herein,microglia were pharmacologically depleted and the effects on the astrocytic response were examined.We further explored the potential mechanisms involving the signal transducers and activators of transcription 3(STAT3)pathway.For in vivo experiments,we constructed a contusion spinal cord injury model in C57BL/6 mice.To deplete microglia,all mice were treated with colony-stimulating factor 1 receptor inhibitor PLX3397,starting 2 weeks prior to surgery until they were sacrificed.Cell proliferation was examined by 5-ethynyl-2-deoxyuridine(EdU)and three pivotal inflammatory cytokines were detected by a specific Bio-Plex Pro^(TM) Reagent Kit.Locomotor function,neuroinflammation,astrocyte activation and phosphorylated STAT3(pSTAT3,a maker of activation of STAT3 signaling)levels were determined.For in vitro experiments,a microglia and astrocyte coculture system was established,and the small molecule STA21,which blocks STAT3 activation,was applied to investigate whether STAT3 signaling is involved in mediating astrocyte proliferation induced by microglia.PLX3397 administration disrupted glial scar formation,increased inflammatory spillover,induced diffuse tissue damage and impaired functional recovery after spinal cord injury.Microglial depletion markedly reduced EdU+proliferating cells,especially proliferating astrocytes at 7 days after spinal cord injury.RNA sequencing analysis showed that the JAK/STAT3 pathway was downregulated in mice treated with PLX3397.Double immunofluorescence staining confirmed that PLX3397 significantly decreased STAT3 expression in astrocytes.Importantly,in vitro coculture of astrocytes and microglia showed that microglia-induced astrocyte proliferation was abolished by STA21 administration.These findings suggest that microglial depletion impaired astrocyte proliferation and astro展开更多
Hantaan virus(HTNV)is a rodent-borne virus that causes hemorrhagic fever with renal syndrome(HFRS),resulting in a high mortality rate of 15%.Interferons(IFNs)play a critical role in the anti-hantaviral immune response...Hantaan virus(HTNV)is a rodent-borne virus that causes hemorrhagic fever with renal syndrome(HFRS),resulting in a high mortality rate of 15%.Interferons(IFNs)play a critical role in the anti-hantaviral immune response,and IFN pretreatment efficiently restricts HTNV infection by triggering the expression of a series of IFNstimulated genes(ISGs)through the Janus kinase-signal transducer and activator of transcription 1(JAK-STAT)pathway.However,the tremendous amount of IFNs produced during late infection could not restrain HTNV replication,and the mechanism remains unclear.Here,we demonstrated that receptor-interacting protein kinase 3(RIPK3),a crucial molecule that mediates necroptosis,was activated by HTNV and contributed to hantavirus evasion of IFN responses by inhibiting STAT1 phosphorylation.RNA-seq analysis revealed the upregulation of multiple cell death-related genes after HTNV infection,with RIPK3 identified as a key modulator of viral replication.RIPK3 ablation significantly enhanced ISGs expression and restrained HTNV replication,without affecting the expression of pattern recognition receptors(PRRs)or the production of type I IFNs.Conversely,exogenously expressed RIPK3 compromised the host's antiviral response and facilitated HTNV replication.RIPK3^(-/-)mice also maintained a robust ability to clear HTNV with enhanced innate immune responses.Mechanistically,we found that RIPK3 could bind STAT1 and inhibit STAT1 phosphorylation dependent on the protein kinase domain(PKD)of RIPK3 but not its kinase activity.Overall,these observations demonstrated a noncanonical function of RIPK3 during viral infection and have elucidated a novel host innate immunity evasion strategy utilized by HTNV.展开更多
The survival of microglia depends on the colony-stimulating factor-1 receptor(CSF1R)signaling pathway under physiological conditions.Ki20227 is a highly selective CSF1R inhibitor that has been shown to change the morp...The survival of microglia depends on the colony-stimulating factor-1 receptor(CSF1R)signaling pathway under physiological conditions.Ki20227 is a highly selective CSF1R inhibitor that has been shown to change the morphology of microglia.However,the effects of Ki20227 on the progression of ischemic stroke are unclear.In this study,male C57 BL/6 mouse models of focal cerebral ischemic injury were established through the occlusion of the middle cerebral artery and then administered 3 mg/g Ki20227 for 3 successive days.The results revealed that the number of ionized calcium-binding adaptor molecule 1/bromodeoxyuridine double positive cells in the infarct tissue was reduced,the degree of edema was increased,neurological deficits were aggravated,infarct volume was increased,and the number of peri-infarct Nissl bodies was reduced.The number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells in the peri-infarct tissue was increased.The expression levels of Bax and Cleaved caspase-3 were up-regulated.Bcl-2 expression was downregulated.The expression levels of inflammatory factors and oxidative stress-associated factors were increased.These findings suggested that Ki20227 blocked microglial proliferation and aggravated the pathological progression of ischemia/reperfusion injury in a transient middle cerebral artery occlusion model.This study was approved by the Animal Ethics Committee of Lanzhou University Second Hospital(approval No.D2020-68)on March 6,2020.展开更多
Poly(ADP-ribose) polymerase 1 (PARP1) plays important roles in the regulation of transcription factors. Mounting evidence has shown that inhibition of PARP1 influences the expression of genes associated with inflammat...Poly(ADP-ribose) polymerase 1 (PARP1) plays important roles in the regulation of transcription factors. Mounting evidence has shown that inhibition of PARP1 influences the expression of genes associated with inflammatory response. Interferon regulatory factor 1 (IRF1) is a critical transcription factor for the development of both the innate and adaptive immune responses against infections. However, the molecular mechanism through which PARP1 mediates the effects has not been clearly demonstrated. Jurkat cells were exposed to dexamethasone (Dex) or PARP1 inhibitor PJ34. The expression levels of IL-12, LMP2, OAS1 and PKR were detected using real-time RT-PCR. The interactions between PARP1 and IRF1 were examined by coimmunoprecipitation (co-IP) assays. We further explored the mechanism of PARP1 suppressing IRF1 by assessing the activities of interferon stimulated response element (ISRE). The mRNA expression of IL-12, LMP2, OAS1 and PKR was obviously suppressed by Dex in Jurkat cells, which could be rescued by PJ34 treatment. Luciferase study revealed that poly(ADP-ribosyl)- ation suppressed IRF1-mediated transcription through preventing the binding of IRF1 to ISREs. PARP1 inhibited IRF1-mediated transcription in Jurkat cells by preventing IRF1 binding to ISREs in the promoters of target genes. It is suggested that PARP1 is a crucial regulator of IRF1-mediated immune response. This study provides experimental evidence for the possible application of PARP1 inhibitors in the treatment of IRF1-related immune anergy.展开更多
基金Financial support was provided by 11th 5-year National Key Technologies R & D Program Project No.2006BAD12B06,2006BAD12B08
文摘Effects of dietary supplementation of chitosan-oligosaccharides (COS) on the growth performance, immune response, stress resistance, and disease resistance of juvenile rainbow trout Oncorhynchus mykiss were studied. Four experimental diets containing 0, 20, 40, or 60 mg/kg COS (COSO, COS20, COS40, and COS60, respectively) were fed to juvenile rainbow trout (initial weight = 5.2 ± 0.3 g) for 8 weeks. By the end of the feeding trial, representative groups of fish from each dietary treatment were challenged with stressor (30 see air exposure) and pathogen exposure (intraperitoneal injection with Aeromonas hydrophila ). Results showed that supplementation of COS in diets did not affect production performance and body composition of rainbow trout. However, fish fed the COS40 diet demonstrated improved phagocytic activities, respiratory burst activities and decreased serum cortisol level. Additionally, survival following A. hydrophila challenge was significant higher among fish fed the COS-supplemented feeds, although there was no difference based on the level of supplementation. The present study suggests that COS can be used as an immuno-stimulant in rainbow trout feeds
基金Supported by National Natural Science Foundation of China to Pei RJ and Chen XC,Nos.31200135 and 31200699German Research Foundation to Lu MG,Nos.TRR60,GK1045/2 and GK1949
文摘Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, affecting more than 350 million people worldwide. The interferon (IFN)-mediated innate immune responses could restrict HBV replication at the different steps of viral life cycle. Indeed, IFN-α has been successfully used for treatment of patients with chronic hepatitis B. However, the role of the innate immune response in HBV replication and the mechanism of the anti-HBV effect of IFN-α are not completely explored. In this review, we summarized the currently available knowledge about the IFN-mediated anti-HBV effect in the HBV life cycle and the possible effectors downstream the IFN signaling pathway. The antiviral effect of Toll-like receptors (TLRs) in HBV replication is briefly discussed. The strategies exploited by HBV to evade the IFN- and TLR-mediated antiviral actions are summarized.
基金supported by National Natural Science Foundation of China(81961138009)111 Project(B18035,China)
文摘As one of the most serious threats to human being,cancer is hard to be treated when metastasis happens.What’s worse,there are few identified targets of metastasis for drug development.Therefore,it is important to develop strategies to prevent metastasis or treat existed metastasis.This review focuses on the procedure of metastasis,and first summarizes the targeting delivery strategies,including primary tumor targeting drug delivery,tumor metastasis targeting drug delivery and hijacking circulation cells.Then,as a promising treatment,the application of immunotherapy in tumor metastasis treatment is introduced,and strategies that stimulating immune response are reviewed,including chemotherapy,photothermal therapy,photodynamic therapy,ferroptosis,sonodynamic therapy,and nanovaccines.Finally,the challenges and perspective about nanoparticle-enabled tumor metastasis treatment are discussed.
基金supported by the Natural Science Foundation of Guangdong Province,No.2020A1515010090(to ZLZ)the Science and Technology Project Foundation of Guangzhou City,No.202002030004(to HZ).
文摘Astrocytes and microglia play an orchestrated role following spinal cord injury;however,the molecular mechanisms through which microglia regulate astrocytes after spinal cord injury are not yet fully understood.Herein,microglia were pharmacologically depleted and the effects on the astrocytic response were examined.We further explored the potential mechanisms involving the signal transducers and activators of transcription 3(STAT3)pathway.For in vivo experiments,we constructed a contusion spinal cord injury model in C57BL/6 mice.To deplete microglia,all mice were treated with colony-stimulating factor 1 receptor inhibitor PLX3397,starting 2 weeks prior to surgery until they were sacrificed.Cell proliferation was examined by 5-ethynyl-2-deoxyuridine(EdU)and three pivotal inflammatory cytokines were detected by a specific Bio-Plex Pro^(TM) Reagent Kit.Locomotor function,neuroinflammation,astrocyte activation and phosphorylated STAT3(pSTAT3,a maker of activation of STAT3 signaling)levels were determined.For in vitro experiments,a microglia and astrocyte coculture system was established,and the small molecule STA21,which blocks STAT3 activation,was applied to investigate whether STAT3 signaling is involved in mediating astrocyte proliferation induced by microglia.PLX3397 administration disrupted glial scar formation,increased inflammatory spillover,induced diffuse tissue damage and impaired functional recovery after spinal cord injury.Microglial depletion markedly reduced EdU+proliferating cells,especially proliferating astrocytes at 7 days after spinal cord injury.RNA sequencing analysis showed that the JAK/STAT3 pathway was downregulated in mice treated with PLX3397.Double immunofluorescence staining confirmed that PLX3397 significantly decreased STAT3 expression in astrocytes.Importantly,in vitro coculture of astrocytes and microglia showed that microglia-induced astrocyte proliferation was abolished by STA21 administration.These findings suggest that microglial depletion impaired astrocyte proliferation and astro
基金This work was supported in whole or in part by the National Natural Science Foundation of China(82172272,31970148 and 82222367)the Key Research and Development Program of Shaanxi(2021ZDLSF01-05 and 2021ZDLSF01-02).
文摘Hantaan virus(HTNV)is a rodent-borne virus that causes hemorrhagic fever with renal syndrome(HFRS),resulting in a high mortality rate of 15%.Interferons(IFNs)play a critical role in the anti-hantaviral immune response,and IFN pretreatment efficiently restricts HTNV infection by triggering the expression of a series of IFNstimulated genes(ISGs)through the Janus kinase-signal transducer and activator of transcription 1(JAK-STAT)pathway.However,the tremendous amount of IFNs produced during late infection could not restrain HTNV replication,and the mechanism remains unclear.Here,we demonstrated that receptor-interacting protein kinase 3(RIPK3),a crucial molecule that mediates necroptosis,was activated by HTNV and contributed to hantavirus evasion of IFN responses by inhibiting STAT1 phosphorylation.RNA-seq analysis revealed the upregulation of multiple cell death-related genes after HTNV infection,with RIPK3 identified as a key modulator of viral replication.RIPK3 ablation significantly enhanced ISGs expression and restrained HTNV replication,without affecting the expression of pattern recognition receptors(PRRs)or the production of type I IFNs.Conversely,exogenously expressed RIPK3 compromised the host's antiviral response and facilitated HTNV replication.RIPK3^(-/-)mice also maintained a robust ability to clear HTNV with enhanced innate immune responses.Mechanistically,we found that RIPK3 could bind STAT1 and inhibit STAT1 phosphorylation dependent on the protein kinase domain(PKD)of RIPK3 but not its kinase activity.Overall,these observations demonstrated a noncanonical function of RIPK3 during viral infection and have elucidated a novel host innate immunity evasion strategy utilized by HTNV.
基金supported by the Natural Science Foundation of Gansu Province,China,Nos.20JR5RA337(to BRH),20JR5RA336(to HJR)Cuiying Graduate Supervisor Applicant Training Program of Lanzhou University Second Hospital,China,No.CYDSPY201902(to BRH)+1 种基金Cuiying Students Research Ability Training Program of Lanzhou University Second Hospital,China,No.CYXZ2020-14(to BRH)Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital,China,No.CY2018-MS08(to BRH)。
文摘The survival of microglia depends on the colony-stimulating factor-1 receptor(CSF1R)signaling pathway under physiological conditions.Ki20227 is a highly selective CSF1R inhibitor that has been shown to change the morphology of microglia.However,the effects of Ki20227 on the progression of ischemic stroke are unclear.In this study,male C57 BL/6 mouse models of focal cerebral ischemic injury were established through the occlusion of the middle cerebral artery and then administered 3 mg/g Ki20227 for 3 successive days.The results revealed that the number of ionized calcium-binding adaptor molecule 1/bromodeoxyuridine double positive cells in the infarct tissue was reduced,the degree of edema was increased,neurological deficits were aggravated,infarct volume was increased,and the number of peri-infarct Nissl bodies was reduced.The number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells in the peri-infarct tissue was increased.The expression levels of Bax and Cleaved caspase-3 were up-regulated.Bcl-2 expression was downregulated.The expression levels of inflammatory factors and oxidative stress-associated factors were increased.These findings suggested that Ki20227 blocked microglial proliferation and aggravated the pathological progression of ischemia/reperfusion injury in a transient middle cerebral artery occlusion model.This study was approved by the Animal Ethics Committee of Lanzhou University Second Hospital(approval No.D2020-68)on March 6,2020.
基金This work was supported by the National Natural Science Foundation of China (No.81370263 and No.81500348).
文摘Poly(ADP-ribose) polymerase 1 (PARP1) plays important roles in the regulation of transcription factors. Mounting evidence has shown that inhibition of PARP1 influences the expression of genes associated with inflammatory response. Interferon regulatory factor 1 (IRF1) is a critical transcription factor for the development of both the innate and adaptive immune responses against infections. However, the molecular mechanism through which PARP1 mediates the effects has not been clearly demonstrated. Jurkat cells were exposed to dexamethasone (Dex) or PARP1 inhibitor PJ34. The expression levels of IL-12, LMP2, OAS1 and PKR were detected using real-time RT-PCR. The interactions between PARP1 and IRF1 were examined by coimmunoprecipitation (co-IP) assays. We further explored the mechanism of PARP1 suppressing IRF1 by assessing the activities of interferon stimulated response element (ISRE). The mRNA expression of IL-12, LMP2, OAS1 and PKR was obviously suppressed by Dex in Jurkat cells, which could be rescued by PJ34 treatment. Luciferase study revealed that poly(ADP-ribosyl)- ation suppressed IRF1-mediated transcription through preventing the binding of IRF1 to ISREs. PARP1 inhibited IRF1-mediated transcription in Jurkat cells by preventing IRF1 binding to ISREs in the promoters of target genes. It is suggested that PARP1 is a crucial regulator of IRF1-mediated immune response. This study provides experimental evidence for the possible application of PARP1 inhibitors in the treatment of IRF1-related immune anergy.