This article discusses the transition of a form of nanoimprint lithography technology,known as Jet and Flash Imprint Lithography(J-FIL),from research to a commercial fabrication infrastructure for leading-edge semicon...This article discusses the transition of a form of nanoimprint lithography technology,known as Jet and Flash Imprint Lithography(J-FIL),from research to a commercial fabrication infrastructure for leading-edge semiconductor integrated circuits(ICs).Leadingedge semiconductor lithography has some of the most aggressive technology requirements,and has been a key driver in the 50-year history of semiconductor scaling.Introducing a new,disruptive capability into this arena is therefore a case study in a“highrisk-high-reward”opportunity.This article first discusses relevant literature in nanopatterning including advanced lithography options that have been explored by the IC fabrication industry,novel research ideas being explored,and literature in nanoimprint lithography.The article then focuses on the J-FIL process,and the interdisciplinary nature of risk,involving nanoscale precision systems,mechanics,materials,material delivery systems,contamination control,and process engineering.Next,the article discusses the strategic decisions that were made in the early phases of the project including:(i)choosing a step and repeat process approach;(ii)identifying the first target IC market for J-FIL;(iii)defining the product scope and the appropriate collaborations to share the risk-reward landscape;and(iv)properly leveraging existing infrastructure,including minimizing disruption to the widely accepted practices in photolithography.Finally,the paper discusses the commercial J-FIL stepper system and associated infrastructure,and the resulting advances in the key lithographic process metrics such as critical dimension control,overlay,throughput,process defects,and electrical yield over the past 5 years.This article concludes with the current state of the art in J-FIL technology for IC fabrication,including description of the high volume manufacturing stepper tools created for advanced memory manufacturing.展开更多
The precision seeding technique has been developed at full speed along with the continuous development of new agricultural technologies,especially those concerning cultivated patterns.The seed-metering device is the k...The precision seeding technique has been developed at full speed along with the continuous development of new agricultural technologies,especially those concerning cultivated patterns.The seed-metering device is the key component of a precision seeder.A ground wheel is used to drive the seed-metering device of the conventional direct seeder.However,the wheel bears high resistance and easily slips.Moreover,the adjustment of the precision seeder’s seeding rate is more difficult.In order to solve these problems,a control system which could keep the rotational speed of the seed-metering device consistent with the seeder’s working speed for the precision seed-metering device was designed.The control system includes a Hall sensor,a single chip microcomputer system,a motor control module,a stepper motor and a display.The control system used a Hall sensor to measure the seeder’s working speed and employed a single chip microcomputer system to predict the rotational speed of seed-metering device.It would then determine the relationship between the seeder’s working speed and the rotational speed of the seed metering-device according to the seeder’s working state,distance between seeds and the requirement of sowing rate.The system could effectively reduce the influence of inhomogeneous sowing caused by the ground wheel’s slipping.The system was found to be reliable by the experiment.The seeding control system could also make the speed of the seed-metering device and seeder’s uniform,improving the uniformity of the amount of seeding,and achieving the goal of design.This new design provides a platform to solve problems of the seed-metering device and the seeder.展开更多
A new design of stato magnetic System is Proposed for 3-phase & 12-pole HB stepper, and it features bet-ter distribution of magntic lield to incare Pullou tope and bopmve Operaonal stability of moor and minimummut...A new design of stato magnetic System is Proposed for 3-phase & 12-pole HB stepper, and it features bet-ter distribution of magntic lield to incare Pullou tope and bopmve Operaonal stability of moor and minimummutual inductance between phase windimp to make design of control circuit easier, and application proved it is as good as expected.展开更多
This paper presents a fuzzy control algorithm applied to the position control of a multi-axis motion platform to achieve high precision motion control of the multi-axis motion platform.A LabVIEW-based multi-axis motio...This paper presents a fuzzy control algorithm applied to the position control of a multi-axis motion platform to achieve high precision motion control of the multi-axis motion platform.A LabVIEW-based multi-axis motion control system is designed.This system controls stepper motors using trapezoidal acceleration/deceleration pulse types and fuzzy control algorithms,which effectively avoids mechanical jitter and loss of step in the process of multi-angle motion of the stepper motor,and achieves accurate control of the stepper motor.The TCP/IP(transmission control protocol/internet protocol)communication protocol is used,so that data are output stably and not lost in the process of transmission and communication,achieving the purpose of interconnection of different systems and remote control of equipment.This control system has been tested to maintain a high level of stability and repeatability during actual operation.展开更多
基金This work was partially funded by DARPA Contract No.N66001-02-C-8011NIST Advanced Technology Program Contract No.70NANB4H3012+2 种基金US DoD Contract No.N66001-06-C-2003DARPA A2P Program administered by AFRL Contract No.FA8650-15-C-7542by the National Science Foundation under Cooperative Agreement No.EEC-1160494.
文摘This article discusses the transition of a form of nanoimprint lithography technology,known as Jet and Flash Imprint Lithography(J-FIL),from research to a commercial fabrication infrastructure for leading-edge semiconductor integrated circuits(ICs).Leadingedge semiconductor lithography has some of the most aggressive technology requirements,and has been a key driver in the 50-year history of semiconductor scaling.Introducing a new,disruptive capability into this arena is therefore a case study in a“highrisk-high-reward”opportunity.This article first discusses relevant literature in nanopatterning including advanced lithography options that have been explored by the IC fabrication industry,novel research ideas being explored,and literature in nanoimprint lithography.The article then focuses on the J-FIL process,and the interdisciplinary nature of risk,involving nanoscale precision systems,mechanics,materials,material delivery systems,contamination control,and process engineering.Next,the article discusses the strategic decisions that were made in the early phases of the project including:(i)choosing a step and repeat process approach;(ii)identifying the first target IC market for J-FIL;(iii)defining the product scope and the appropriate collaborations to share the risk-reward landscape;and(iv)properly leveraging existing infrastructure,including minimizing disruption to the widely accepted practices in photolithography.Finally,the paper discusses the commercial J-FIL stepper system and associated infrastructure,and the resulting advances in the key lithographic process metrics such as critical dimension control,overlay,throughput,process defects,and electrical yield over the past 5 years.This article concludes with the current state of the art in J-FIL technology for IC fabrication,including description of the high volume manufacturing stepper tools created for advanced memory manufacturing.
基金This work was financially supported by the Special Fund for Agro-scientific Research in the Public Interest(No.201203059)the Natural Science Foundation of China(No.51275196)+1 种基金the Fundamental Research Funds for the Central Universities(No.2012ZYTS022)and the National Key Technology R&D Program(No.2011BAD20B08).
文摘The precision seeding technique has been developed at full speed along with the continuous development of new agricultural technologies,especially those concerning cultivated patterns.The seed-metering device is the key component of a precision seeder.A ground wheel is used to drive the seed-metering device of the conventional direct seeder.However,the wheel bears high resistance and easily slips.Moreover,the adjustment of the precision seeder’s seeding rate is more difficult.In order to solve these problems,a control system which could keep the rotational speed of the seed-metering device consistent with the seeder’s working speed for the precision seed-metering device was designed.The control system includes a Hall sensor,a single chip microcomputer system,a motor control module,a stepper motor and a display.The control system used a Hall sensor to measure the seeder’s working speed and employed a single chip microcomputer system to predict the rotational speed of seed-metering device.It would then determine the relationship between the seeder’s working speed and the rotational speed of the seed metering-device according to the seeder’s working state,distance between seeds and the requirement of sowing rate.The system could effectively reduce the influence of inhomogeneous sowing caused by the ground wheel’s slipping.The system was found to be reliable by the experiment.The seeding control system could also make the speed of the seed-metering device and seeder’s uniform,improving the uniformity of the amount of seeding,and achieving the goal of design.This new design provides a platform to solve problems of the seed-metering device and the seeder.
文摘A new design of stato magnetic System is Proposed for 3-phase & 12-pole HB stepper, and it features bet-ter distribution of magntic lield to incare Pullou tope and bopmve Operaonal stability of moor and minimummutual inductance between phase windimp to make design of control circuit easier, and application proved it is as good as expected.
文摘This paper presents a fuzzy control algorithm applied to the position control of a multi-axis motion platform to achieve high precision motion control of the multi-axis motion platform.A LabVIEW-based multi-axis motion control system is designed.This system controls stepper motors using trapezoidal acceleration/deceleration pulse types and fuzzy control algorithms,which effectively avoids mechanical jitter and loss of step in the process of multi-angle motion of the stepper motor,and achieves accurate control of the stepper motor.The TCP/IP(transmission control protocol/internet protocol)communication protocol is used,so that data are output stably and not lost in the process of transmission and communication,achieving the purpose of interconnection of different systems and remote control of equipment.This control system has been tested to maintain a high level of stability and repeatability during actual operation.