针对具有不确定干扰的汽轮发电机励磁与汽阀综合控制系统,建立鲁棒综合控制模型。运用基于Sum of Squares(SOS)分解技术的鲁棒控制方法(SOSRCA),设计电力系统鲁棒综合控制方法。该方法充分考虑了综合系统中存在的不确定参数及干扰,使发...针对具有不确定干扰的汽轮发电机励磁与汽阀综合控制系统,建立鲁棒综合控制模型。运用基于Sum of Squares(SOS)分解技术的鲁棒控制方法(SOSRCA),设计电力系统鲁棒综合控制方法。该方法充分考虑了综合系统中存在的不确定参数及干扰,使发电机组具有较好的鲁棒性能。控制方法的求解过程是算法化、程序化的,避免了繁琐的递归设计和参数估计过程。最后,在三机电力系统仿真中,对基于SOSRCA所得出的鲁棒综合控制律进行仿真分析与讨论,验证其有效性及优越性。展开更多
A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving con...A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving control are simultaneously considered. Design of these controllers combines the differential geometry theory with the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant. The dynamic performance of the nonlinear variable structure controllers proposed for a single machine connected to an infinite bus power system is simulated. Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.展开更多
文摘针对具有不确定干扰的汽轮发电机励磁与汽阀综合控制系统,建立鲁棒综合控制模型。运用基于Sum of Squares(SOS)分解技术的鲁棒控制方法(SOSRCA),设计电力系统鲁棒综合控制方法。该方法充分考虑了综合系统中存在的不确定参数及干扰,使发电机组具有较好的鲁棒性能。控制方法的求解过程是算法化、程序化的,避免了繁琐的递归设计和参数估计过程。最后,在三机电力系统仿真中,对基于SOSRCA所得出的鲁棒综合控制律进行仿真分析与讨论,验证其有效性及优越性。
文摘A set of novel nonlinear variable structure excitation and steam-valving controllers are proposed in this paper. On the basis of the classical dynamic equations of a generator, excitation control and steam valving control are simultaneously considered. Design of these controllers combines the differential geometry theory with the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control design of a large-scale power plant. The dynamic performance of the nonlinear variable structure controllers proposed for a single machine connected to an infinite bus power system is simulated. Simulation results show that the nonlinear variable structure excitation and steam-valving controllers give satisfactory dynamic performance and good robustness.