Theory and concepts of boundary layer mass transfer is applied to correlate experimental data on extraction of essential oils from vegetable leaves and stems, using steam. From these theory, concepts and experimental ...Theory and concepts of boundary layer mass transfer is applied to correlate experimental data on extraction of essential oils from vegetable leaves and stems, using steam. From these theory, concepts and experimental data with seven systems, two correlations are developed to predict the Sherwood number and mass transfer coefficient as function of Reynolds and Schmidt numbers. From these equations, the molar flux, the amount of solute extracted, and the yield of extraction is predicted. A steam of higher temperature normally improves the mass transfer and the yield. A method to estimate the enhancement for temperature increase is proposed. The correlations developed are applied to a case with industrial size that was no part of the data for correlation generation. Theory may be applied for industrial applications.展开更多
Internal reformation of low steam methane fuel is highly beneficial for improving the energy efficiency and reducing the system complexity and cost of solid oxide fuel cells(SOFCs).However,anode coking for the Ni-base...Internal reformation of low steam methane fuel is highly beneficial for improving the energy efficiency and reducing the system complexity and cost of solid oxide fuel cells(SOFCs).However,anode coking for the Ni-based anode should be prevented before the technology becomes a reality.A multi-physics fully coupled model is employed to simulate the operations of SOFCs fueled by low steam methane.The multi-physics model produces I-V relations that are in excellent agreement with the experimental results.The multi-physics model and the experimental non-coking current density deduced kinetic carbon activity criterion are used to examine the effect of operating parameters and the anode diffusion barrier layer on the propensity of carbon deposition.The interplays among the fuel utilization ratio,current generation,thickness of the barrier layer and the cell operating voltage are revealed.It is demonstrated that a barrier layer of 400μm thickness is an optimal and safe anode design to achieve high power density and non-coking operations.The anode structure design can be very useful for the development of high efficiency and low cost SOFC technology.展开更多
基金supported by the National Natural Science Foundation of China(U20A20250,52172206,and 22179034)the Development Plan of the Youth Innovation Team in Colleges and Universities of Shandong Province。
文摘Theory and concepts of boundary layer mass transfer is applied to correlate experimental data on extraction of essential oils from vegetable leaves and stems, using steam. From these theory, concepts and experimental data with seven systems, two correlations are developed to predict the Sherwood number and mass transfer coefficient as function of Reynolds and Schmidt numbers. From these equations, the molar flux, the amount of solute extracted, and the yield of extraction is predicted. A steam of higher temperature normally improves the mass transfer and the yield. A method to estimate the enhancement for temperature increase is proposed. The correlations developed are applied to a case with industrial size that was no part of the data for correlation generation. Theory may be applied for industrial applications.
基金supported by the National Natural Science Foundation of China (No.11574284 abd No.11774324)the National Basic Research Program of China (No.2012CB215405)Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Internal reformation of low steam methane fuel is highly beneficial for improving the energy efficiency and reducing the system complexity and cost of solid oxide fuel cells(SOFCs).However,anode coking for the Ni-based anode should be prevented before the technology becomes a reality.A multi-physics fully coupled model is employed to simulate the operations of SOFCs fueled by low steam methane.The multi-physics model produces I-V relations that are in excellent agreement with the experimental results.The multi-physics model and the experimental non-coking current density deduced kinetic carbon activity criterion are used to examine the effect of operating parameters and the anode diffusion barrier layer on the propensity of carbon deposition.The interplays among the fuel utilization ratio,current generation,thickness of the barrier layer and the cell operating voltage are revealed.It is demonstrated that a barrier layer of 400μm thickness is an optimal and safe anode design to achieve high power density and non-coking operations.The anode structure design can be very useful for the development of high efficiency and low cost SOFC technology.