Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,exper...Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.展开更多
This paper presents an improved space-time conservation element and solution element(CESE)method by applying a non-staggered space-time mesh system and simply improving the calculation of flow variables and applies it...This paper presents an improved space-time conservation element and solution element(CESE)method by applying a non-staggered space-time mesh system and simply improving the calculation of flow variables and applies it to magnetohydrodynamics(MHD)equations.The improved CESE method can improve the solution quality even with a large disparity in the Courant number(CFL)when using a fixed global marching time.Moreover,for a small CFL(say<0.1),the method can significantly reduce the numerical dissipation and retain the solution quality,which are verified by two benchmark problems.And meanwhile,comparison with the original CESE scheme shows better resolution of the improved scheme results.Finally,we demonstrate its validation through the application of this method in three-dimensional coronal dynamical structure with dipole magnetic fields and measured solar surface magnetic fields as the initial input.展开更多
基金supported by the Explore Research Project of the General Armament Department (No. NHA13002)the Fundamental Research Funds for the Central Universities (No.NP2016412)the National Natural Science Foundation of China(No.51505261)
文摘Mechanical elastic wheel(ME-wheel)is a new type of non-inflatable safety tyre,and the structure is significantly different from traditional pneumatic tyre.In order to investigate cornering properties of ME-wheel,experimental research on mechanics characteristics of ME-wheel under steady-state cornering conditions are carried out.The test of steady-state cornering properties of ME-wheel at different experimental parameter conditions is conducted by test bench for dynamic mechanical properties of tyre.Cornering property curves are used to analyze the steady-state cornering properties of ME-wheel,namely the variation tendency of lateral force or aligning torque with the increase of side-slip angle.Moreover,evaluation indexes for cornering properties of ME-wheel are extracted and the effect of different experimental parameters(including vertical load,friction coefficient,and speed)on cornering properties of ME-wheel is contrastively analyzed.The proposed research can provide certain reference to facilitate structure parameters and cornering properties optimizing process of ME-wheel.
基金supported by the National Basic Research Program of China(Grant No.2012CB825601)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-01-4)+1 种基金the National Natural Science Foundation of China(Grant Nos.41031066,41231068,41074121&41074122)the Specialized Research Fund for State Key Laboratories
文摘This paper presents an improved space-time conservation element and solution element(CESE)method by applying a non-staggered space-time mesh system and simply improving the calculation of flow variables and applies it to magnetohydrodynamics(MHD)equations.The improved CESE method can improve the solution quality even with a large disparity in the Courant number(CFL)when using a fixed global marching time.Moreover,for a small CFL(say<0.1),the method can significantly reduce the numerical dissipation and retain the solution quality,which are verified by two benchmark problems.And meanwhile,comparison with the original CESE scheme shows better resolution of the improved scheme results.Finally,we demonstrate its validation through the application of this method in three-dimensional coronal dynamical structure with dipole magnetic fields and measured solar surface magnetic fields as the initial input.