Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of...Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multiepoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions,are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with Teff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.展开更多
In this work, we provide 2189 photometrically- and kinematically-selected candidate members of 24 star clusters from the LAMOST DR2 catalog. We perform two-step membership identification: selection along the stellar ...In this work, we provide 2189 photometrically- and kinematically-selected candidate members of 24 star clusters from the LAMOST DR2 catalog. We perform two-step membership identification: selection along the stellar track in the colormagnitude diagram, i.e., photometric identification, and selection from the distribution of radial velocities, i.e. the kinematic identification. We find that the radial velocities from the LAMOST data are very helpful in the membership identification. The mean probability of membership is 40% for the sample selected with radial velocity. With these 24 star clusters, we investigate the performance of the radial velocity and metallicity estimated with the LAMOST pipeline. We find that the systematic offsets in radial velocity and metallicity are 0.85 ± 1.26 km s-1and-0.08 ± 0.04 dex, with dispersions of 5.47+1.16-0.71 km s-1and 0.13+0.04-0.02 dex, respectively. Finally, we propose that the photometrically-selected candidate members of the clusters covered by the LAMOST footprint should be assigned higher priority so that more candidate stars can be observed.展开更多
基金partially supported by the National Key Basic Research Program of China(2014CB845700)China Postdoctoral Science Foundation(2016M600850)+1 种基金the National Natural Science Foundation of China(No.11443006)Joint Research Fund in Astronomy(Nos.U1531244 and U1631236)
文摘Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multiepoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions,are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with Teff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.
基金supported by the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (Grant No. XDB09000000)the National Key Basic Research Program of China (2014CB845700)+3 种基金CL acknowledges the National Natural Science Foundation of China (NSFC, Grant Nos. 11373032, 11333003 and U1231119)XYC acknowledges the NSFC (Grant No. 11403036)the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y429012001)two Young Researcher Grants from National Astronomical Observatories, Chinese Academy of Sciences
文摘In this work, we provide 2189 photometrically- and kinematically-selected candidate members of 24 star clusters from the LAMOST DR2 catalog. We perform two-step membership identification: selection along the stellar track in the colormagnitude diagram, i.e., photometric identification, and selection from the distribution of radial velocities, i.e. the kinematic identification. We find that the radial velocities from the LAMOST data are very helpful in the membership identification. The mean probability of membership is 40% for the sample selected with radial velocity. With these 24 star clusters, we investigate the performance of the radial velocity and metallicity estimated with the LAMOST pipeline. We find that the systematic offsets in radial velocity and metallicity are 0.85 ± 1.26 km s-1and-0.08 ± 0.04 dex, with dispersions of 5.47+1.16-0.71 km s-1and 0.13+0.04-0.02 dex, respectively. Finally, we propose that the photometrically-selected candidate members of the clusters covered by the LAMOST footprint should be assigned higher priority so that more candidate stars can be observed.