A statistical dynamic model for forecasting Chinese landfall of tropical cyclones (CLTCs) was developed based on the empirical relationship between the observed CLTC variability and the hindcast atmospheric circulat...A statistical dynamic model for forecasting Chinese landfall of tropical cyclones (CLTCs) was developed based on the empirical relationship between the observed CLTC variability and the hindcast atmospheric circulations from the Pusan National University coupled general circulation model (PNU-CGCM).In the last 31 years,CLTCs have shown strong year-to-year variability,with a maximum frequency in 1994 and a minimum frequency in 1987.Such features were well forecasted by the model.A cross-validation test showed that the correlation between the observed index and the forecasted CLTC index was high,with a coefficient of 0.71.The relative error percentage (16.3%) and root-mean-square error (1.07) were low.Therefore the coupled model performs well in terms of forecasting CLTCs;the model has potential for dynamic forecasting of landfall of tropical cyclones.展开更多
The purpose of this study was to design and test a statistical-dynamical scheme for the extraseasonal(one season in advance) prediction of summer rainfall at 160 observation stations across China.The scheme combined...The purpose of this study was to design and test a statistical-dynamical scheme for the extraseasonal(one season in advance) prediction of summer rainfall at 160 observation stations across China.The scheme combined both valuable information from the preceding observations and dynamical information from synchronous numerical predictions of atmospheric circulation factors produced by an atmospheric general circulation model.First,the key preceding climatic signals and synchronous atmospheric circulation factors that were not only closely related to summer rainfall but also numerically predictable were identified as the potential predictors.Second,the extraseasonal prediction models of summer rainfall were constructed using a multivariate linear regression analysis for 15 subregions and then 160 stations across China.Cross-validation analyses performed for the period 1983-2008 revealed that the performance of the prediction models was not only high in terms of interannual variation,trend,and sign but also was stable during the whole period.Furthermore,the performance of the scheme was confirmed by the accuracy of the real-time prediction of summer rainfall during 2009 and 2010.展开更多
In the first paper in this series, a variational data assimilation of ideal tropical cyclone (TC) tracks was performed for the statistical-dynamical prediction model SD-90 by the adjoint method, and a prediction of ...In the first paper in this series, a variational data assimilation of ideal tropical cyclone (TC) tracks was performed for the statistical-dynamical prediction model SD-90 by the adjoint method, and a prediction of TC tracks was made with good accuracy for tracks containing no sharp turns. In the present paper, the cases of real TC tracks are studied. Due to the complexity of TC motion, attention is paid to the diagnostic research of TC motion. First, five TC tracks are studied. Using the data of each entire TC track, by the adjoint method, five TC tracks are fitted well, and the forces acting on the TCs are retrieved. For a given TC, the distribution of the resultant of the retrieved force and Coriolis force well matches the corresponding TC track, i.e., when a TC turns, the resultant of the retrieved force and Coriolis force acts as a centripetal force, which means that the TC indeed moves like a particle; in particular, for TC 9911, the clockwise looping motion is also fitted well. And the distribution of the resultant appears to be periodic in some cases. Then, the present method is carried out for a portion of the track data for TC 9804, which indicates that when the amount of data for a TC track is sufficient, the algorithm is stable. And finally, the same algorithm is implemented for TCs with a double-eyewall structure, namely Bilis (2000) and Winnie (1997), and the results prove the applicability of the algorithm to TCs with complicated mesoscale structures if the TC track data are obtained every three hours.展开更多
Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from Jun...Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from June to October. This model is the first approach to target seasonal TC track clusters covering the entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using a simple statistical method that can be applied at weather operation centers. In this note, we describe the procedure of the track-pattern-based model with brief technical background to provide practical information on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments. Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure described in this note. Work continues on establishing an automatic system for this model at the NTC.展开更多
This study summarized the procedure for the seasonal predictions of tropical cyclones(TCs)over the western North Pacific(WNP),which is currently operating at the Korea Meteorological Administration(KMA),Republic of Ko...This study summarized the procedure for the seasonal predictions of tropical cyclones(TCs)over the western North Pacific(WNP),which is currently operating at the Korea Meteorological Administration(KMA),Republic of Korea.The methodology was briefly described,and its prediction accuracy was verified.Seasonal predictions were produced by synthesizing spatiotemporal evolutions of various climate factors such as El Ni no–Southern Oscillation(ENSO),monsoon activity,and Madden–Julian Oscillation(MJO),using four models:a statistical,a dynamical,and two statistical–dynamical models.The KMA forecaster predicted the number of TCs over the WNP based on the results of the four models and season to season climate variations.The seasonal prediction of TCs is announced through the press twice a year,for the summer on May and fall on August.The present results showed low accuracy during the period 2014–2020.To advance forecast skill,a set of recommendations are suggested.展开更多
The cause-effect relationship is not always possible to trace in GCMs because of the simultaneous inclusion of several highly complex physical processes. Furthermore, the inter-GCM differences are large and there is n...The cause-effect relationship is not always possible to trace in GCMs because of the simultaneous inclusion of several highly complex physical processes. Furthermore, the inter-GCM differences are large and there is no simple way to reconcile them. So, simple climate models, like statistical-dynamical models (SDMs), appear to be useful in this context. This kind of models is essentially mechanistic, being directed towards understanding the dependence of a particular mechanism on the other parameters of the problem. In this paper, the utility of SDMs for studies of climate change is discussed in some detail. We show that these models are an indispensable part of hierarchy of climate models.展开更多
Seasonal prediction of summer rainfall is crucial to reduction of regional disasters,but currently it has a low prediction skill.We developed a dynamical and machine learning hybrid(MLD)seasonal prediction method for ...Seasonal prediction of summer rainfall is crucial to reduction of regional disasters,but currently it has a low prediction skill.We developed a dynamical and machine learning hybrid(MLD)seasonal prediction method for summer rainfall in China based on circulation fields from the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System Model finite volume version 2(FGOALS-f2)operational dynamical prediction model.Through selecting optimum hyperparameters for three machine learning methods to obtain the best fit and least overfitting,an ensemble mean of the random forest and gradient boosting regression tree methods was shown to have the highest prediction skill measured by the anomalous correlation coefficient.The skill has an average value of 0.34 in the historical cross-validation period(1981-2010)and 0.20 in the 10-yr period(2011-2020)of independent prediction,which significantly improves the dynamical prediction skill by 400%.Both reducing overfitting and using the best dynamical prediction are important in applications of the MLD method and in-depth analysis of these warrants a further investigation.展开更多
Based on the atmospheric analogy principle, the inverse problem that the information of historical analogue data is utilized to estimate model errors is put forward and a method of analogue correction of errors (ACE...Based on the atmospheric analogy principle, the inverse problem that the information of historical analogue data is utilized to estimate model errors is put forward and a method of analogue correction of errors (ACE) of model is developed in this paper. The ACE can combine effectively statistical and dynamical methods, and need not change the current numerical prediction models. The new method not only adequately utilizes dynamical achievements but also can reasonably absorb the information of a great many analogues in historical data in order to reduce model errors and improve forecast skill. Purthermore, the ACE may identify specific historical data for the solution of the inverse problem in terms of the particularity of current forecast. The qualitative analyses show that the ACE is theoretically equivalent to the principle of the previous analogue-dynamical model, but need not rebuild the complicated analogue-deviation model, so has better feasibility and operational foreground. Moreover, under the ideal situations, when numerical models or historical analogues are perfect, the forecast of the ACE would transform into the forecast of dynamical or statistical method, respectively.展开更多
Following Tsai & Ma[1] and Tsai & Liu[2], a statistical and dynamical near-wall turbulent coherent structural model with separate consideration of two different portions:locally generated and upstream-transpo...Following Tsai & Ma[1] and Tsai & Liu[2], a statistical and dynamical near-wall turbulent coherent structural model with separate consideration of two different portions:locally generated and upstream-transported large eddies has been established.With this model, heat transfer in a fully developed open channel in the absence of pressure gradient is numerically simulated. Database of fluctuations of velocity and temperature has also been set. Numerical analysis shows the existence of high-low temperature streak caused by near-wall coherent structure and its swing in the lateral direction.Numerical results are in accordance with the computations and experimental results of other researchers.展开更多
An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dyna...An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dynamical-only downscaling method are applied to daily mean,minimum and maximum air temperatures to investigate the quality of localscale estimates produced by downscaling.These two downscaling approaches are evaluated using station observation data obtained from the Finnish Meteorological Institute over a near-coastal region of western Finland.The dynamical downscaling is performed with the Weather Research and Forecasting(WRF)model,and the statistical downscaling method implemented is the Cumulative Distribution Function-transform(CDF-t).The CDF-t is trained using 20 years of WRF-downscaled Climate Forecast System Reanalysis data over the region at a 3-km spatial resolution for the central month of each season.The performance of the two methods is assessed qualitatively,by inspection of quantile-quantile plots,and quantitatively,through the Cramer-von Mises,mean absolute error,and root-mean-square error diagnostics.The hybrid approach is found to provide significantly more skillful forecasts of the observed daily mean and maximum air temperatures than those of the dynamical-only downscaling(for all seasons).The hybrid method proves to be less computationally expensive,and also to give more skillful temperature forecasts(at least for the Finnish near-coastal region).展开更多
基金supported by the Chinese Academy of Sciences key program(Grant No. KZCX2-YW-Q03-3)the Korea Meteorological Administration Research and Development Program(Grant No. CATER 2009-1147)+1 种基金the Korea Rural Development Administration Research and Development Programthe National Basic Research Program of China (Grant No. 2009CB421406)
文摘A statistical dynamic model for forecasting Chinese landfall of tropical cyclones (CLTCs) was developed based on the empirical relationship between the observed CLTC variability and the hindcast atmospheric circulations from the Pusan National University coupled general circulation model (PNU-CGCM).In the last 31 years,CLTCs have shown strong year-to-year variability,with a maximum frequency in 1994 and a minimum frequency in 1987.Such features were well forecasted by the model.A cross-validation test showed that the correlation between the observed index and the forecasted CLTC index was high,with a coefficient of 0.71.The relative error percentage (16.3%) and root-mean-square error (1.07) were low.Therefore the coupled model performs well in terms of forecasting CLTCs;the model has potential for dynamic forecasting of landfall of tropical cyclones.
基金provided by the Special Scientific Research Fund of Meteorological Public Welfare Profession of China(Grant No. GYHY200906018)the National Basic Research Program of China (Grant Nos. 2009CB421406 and 2010CB950304)the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q03-3)
文摘The purpose of this study was to design and test a statistical-dynamical scheme for the extraseasonal(one season in advance) prediction of summer rainfall at 160 observation stations across China.The scheme combined both valuable information from the preceding observations and dynamical information from synchronous numerical predictions of atmospheric circulation factors produced by an atmospheric general circulation model.First,the key preceding climatic signals and synchronous atmospheric circulation factors that were not only closely related to summer rainfall but also numerically predictable were identified as the potential predictors.Second,the extraseasonal prediction models of summer rainfall were constructed using a multivariate linear regression analysis for 15 subregions and then 160 stations across China.Cross-validation analyses performed for the period 1983-2008 revealed that the performance of the prediction models was not only high in terms of interannual variation,trend,and sign but also was stable during the whole period.Furthermore,the performance of the scheme was confirmed by the accuracy of the real-time prediction of summer rainfall during 2009 and 2010.
基金This work was supported jointly by the Typhoon Foundation of Shanghaiby LASC of the Institute of Atmospheric Physics of the Chinese Academy of Sciencesby the National Natural Science Foundation of China under Grant No. 40633030.
文摘In the first paper in this series, a variational data assimilation of ideal tropical cyclone (TC) tracks was performed for the statistical-dynamical prediction model SD-90 by the adjoint method, and a prediction of TC tracks was made with good accuracy for tracks containing no sharp turns. In the present paper, the cases of real TC tracks are studied. Due to the complexity of TC motion, attention is paid to the diagnostic research of TC motion. First, five TC tracks are studied. Using the data of each entire TC track, by the adjoint method, five TC tracks are fitted well, and the forces acting on the TCs are retrieved. For a given TC, the distribution of the resultant of the retrieved force and Coriolis force well matches the corresponding TC track, i.e., when a TC turns, the resultant of the retrieved force and Coriolis force acts as a centripetal force, which means that the TC indeed moves like a particle; in particular, for TC 9911, the clockwise looping motion is also fitted well. And the distribution of the resultant appears to be periodic in some cases. Then, the present method is carried out for a portion of the track data for TC 9804, which indicates that when the amount of data for a TC track is sufficient, the algorithm is stable. And finally, the same algorithm is implemented for TCs with a double-eyewall structure, namely Bilis (2000) and Winnie (1997), and the results prove the applicability of the algorithm to TCs with complicated mesoscale structures if the TC track data are obtained every three hours.
基金funded by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-2040supported by the BK21 project of the Korean government
文摘Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from June to October. This model is the first approach to target seasonal TC track clusters covering the entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using a simple statistical method that can be applied at weather operation centers. In this note, we describe the procedure of the track-pattern-based model with brief technical background to provide practical information on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments. Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure described in this note. Work continues on establishing an automatic system for this model at the NTC.
基金funded by the Korea Meteorological Administration Research and Development Programs, “Advancing Severe Weather Analysis and Forecast Technology” under Grant (KMA2018-00121) and “Development of typhoon analysis and forecast technology” under Grant (KMA2018-00722)。
文摘This study summarized the procedure for the seasonal predictions of tropical cyclones(TCs)over the western North Pacific(WNP),which is currently operating at the Korea Meteorological Administration(KMA),Republic of Korea.The methodology was briefly described,and its prediction accuracy was verified.Seasonal predictions were produced by synthesizing spatiotemporal evolutions of various climate factors such as El Ni no–Southern Oscillation(ENSO),monsoon activity,and Madden–Julian Oscillation(MJO),using four models:a statistical,a dynamical,and two statistical–dynamical models.The KMA forecaster predicted the number of TCs over the WNP based on the results of the four models and season to season climate variations.The seasonal prediction of TCs is announced through the press twice a year,for the summer on May and fall on August.The present results showed low accuracy during the period 2014–2020.To advance forecast skill,a set of recommendations are suggested.
文摘The cause-effect relationship is not always possible to trace in GCMs because of the simultaneous inclusion of several highly complex physical processes. Furthermore, the inter-GCM differences are large and there is no simple way to reconcile them. So, simple climate models, like statistical-dynamical models (SDMs), appear to be useful in this context. This kind of models is essentially mechanistic, being directed towards understanding the dependence of a particular mechanism on the other parameters of the problem. In this paper, the utility of SDMs for studies of climate change is discussed in some detail. We show that these models are an indispensable part of hierarchy of climate models.
基金Supported by the National Natural Science Foundation of China(42022034,41775071,and U1811464)China National Key Research and Development Program[Early Warning and Prevention of Major Natural Disaster(2018YFC1506005)]。
文摘Seasonal prediction of summer rainfall is crucial to reduction of regional disasters,but currently it has a low prediction skill.We developed a dynamical and machine learning hybrid(MLD)seasonal prediction method for summer rainfall in China based on circulation fields from the Chinese Academy of Sciences(CAS)Flexible Global Ocean-Atmosphere-Land System Model finite volume version 2(FGOALS-f2)operational dynamical prediction model.Through selecting optimum hyperparameters for three machine learning methods to obtain the best fit and least overfitting,an ensemble mean of the random forest and gradient boosting regression tree methods was shown to have the highest prediction skill measured by the anomalous correlation coefficient.The skill has an average value of 0.34 in the historical cross-validation period(1981-2010)and 0.20 in the 10-yr period(2011-2020)of independent prediction,which significantly improves the dynamical prediction skill by 400%.Both reducing overfitting and using the best dynamical prediction are important in applications of the MLD method and in-depth analysis of these warrants a further investigation.
基金Supported jointly by the National Natural Science Foundation of China under Grant Nos. 40233031, 40575036 and 40675039.
文摘Based on the atmospheric analogy principle, the inverse problem that the information of historical analogue data is utilized to estimate model errors is put forward and a method of analogue correction of errors (ACE) of model is developed in this paper. The ACE can combine effectively statistical and dynamical methods, and need not change the current numerical prediction models. The new method not only adequately utilizes dynamical achievements but also can reasonably absorb the information of a great many analogues in historical data in order to reduce model errors and improve forecast skill. Purthermore, the ACE may identify specific historical data for the solution of the inverse problem in terms of the particularity of current forecast. The qualitative analyses show that the ACE is theoretically equivalent to the principle of the previous analogue-dynamical model, but need not rebuild the complicated analogue-deviation model, so has better feasibility and operational foreground. Moreover, under the ideal situations, when numerical models or historical analogues are perfect, the forecast of the ACE would transform into the forecast of dynamical or statistical method, respectively.
文摘Following Tsai & Ma[1] and Tsai & Liu[2], a statistical and dynamical near-wall turbulent coherent structural model with separate consideration of two different portions:locally generated and upstream-transported large eddies has been established.With this model, heat transfer in a fully developed open channel in the absence of pressure gradient is numerically simulated. Database of fluctuations of velocity and temperature has also been set. Numerical analysis shows the existence of high-low temperature streak caused by near-wall coherent structure and its swing in the lateral direction.Numerical results are in accordance with the computations and experimental results of other researchers.
基金Botnia-Atlantica, an EU-programme financing cross border cooperation projects in Sweden, Finland and Norway, for their support of this work through the WindCoE project
文摘An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dynamical-only downscaling method are applied to daily mean,minimum and maximum air temperatures to investigate the quality of localscale estimates produced by downscaling.These two downscaling approaches are evaluated using station observation data obtained from the Finnish Meteorological Institute over a near-coastal region of western Finland.The dynamical downscaling is performed with the Weather Research and Forecasting(WRF)model,and the statistical downscaling method implemented is the Cumulative Distribution Function-transform(CDF-t).The CDF-t is trained using 20 years of WRF-downscaled Climate Forecast System Reanalysis data over the region at a 3-km spatial resolution for the central month of each season.The performance of the two methods is assessed qualitatively,by inspection of quantile-quantile plots,and quantitatively,through the Cramer-von Mises,mean absolute error,and root-mean-square error diagnostics.The hybrid approach is found to provide significantly more skillful forecasts of the observed daily mean and maximum air temperatures than those of the dynamical-only downscaling(for all seasons).The hybrid method proves to be less computationally expensive,and also to give more skillful temperature forecasts(at least for the Finnish near-coastal region).