Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite the highly successful use of these events...Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite the highly successful use of these events in this capacity, many fundamental questions remain. Contemporary research inves- tigates how properties of the progenitor system that follow from the host galaxy such as composition and age influence the brightness of an event with the goal of better understanding and assessing the intrinsic scatter in the brightness. We provide an overview of these supernovae and proposed progenitor systems, all of which involve one or more compact stars known as white dwarfs. We describe contemporary research investigating how the composition and structure of the progenitor white dwarf systematically influences the explosion outcome assuming the progenitor is a single white dwarf that has gained mass from a companion. We present results illustrating some of these systematic effects from our research.展开更多
This review considers the observations of hot, hydrogen-rich white dwarfstars, with particular reference to measurements of temperature, surface gravity and composition.Spectroscopic data from a variety of wavelength ...This review considers the observations of hot, hydrogen-rich white dwarfstars, with particular reference to measurements of temperature, surface gravity and composition.Spectroscopic data from a variety of wavelength ranges are required for this work and, inparticular, the important contributions from optical, ultraviolet and extreme ultraviolet studiesare discussed. Using the values of T_(eff) and log g determined for an individual white dwarf,estimates of mass and radius might be derived from the theoretical mass-radius relation. The issueof the accuracy of the theoretical mass-radius calculations and the prospects for making empiricaltests using observational data are outlined.展开更多
The equation of state of the electron degenerate gas in a white dwarf is usually treated by employing the ideal dispersion relation.However, the effect of quantum gravity is expected to be inevitably present and when ...The equation of state of the electron degenerate gas in a white dwarf is usually treated by employing the ideal dispersion relation.However, the effect of quantum gravity is expected to be inevitably present and when this effect is considered through a non-commutative formulation, the dispersion relation undergoes a substantial modification.In this paper, we take such a modified dispersion relation and find the corresponding equation of state for the degenerate electron gas in white dwarfs.Hence we solve the equation of hydrostatic equilibrium and find that this leads to the possibility of the existence of excessively high values of masses exceeding the Chandrasekhar limit, although the quantum gravity effect is taken to be very small.It is only when we impose the additional effect of neutronization that we obtain white dwarfs with masses close to the Chandrasekhar limit with nonzero radii at the neutronization threshold.We demonstrate these results by giving numerical estimates for the masses and radii of helium, carbon and oxygen white dwarfs.展开更多
Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation.However,a significant fraction with low mass ratios will survive for a long time as a conseque...Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation.However,a significant fraction with low mass ratios will survive for a long time as a consequence of stable mass transfer.Such stable mass transfer between two helium white dwarfs(He WDs) provides one channel for the production of AM CVn binary stars.In previous calculations of double He WD progenitors,the accreting He WD was treated as a point mass.We have computed the evolution of 16 double He WD models in order to investigate the consequences of treating the evolution of both components in detail.We find that the boundary between binaries having stable and unstable mass transfer is slightly modified by this approach.By comparing with observed periods and mass ratios,we redetermine masses of eight known AM CVn stars by our double He WDs channel,i.e.HM Cnc,AM CVn,V406 Hya,J0926,J1240,GP Com,Gaia14 aae and V396 Hya.We propose that central spikes in the triple-peaked emission spectra of J1240,GP Com and V396 Hya and the surface abundance ratios of N/C/O in GP Com can be explained by the stable double He WD channel.The mass estimates derived from our calculations are used to discuss the predicted gravitational wave signal in the context of the Laser Interferometer Space Antenna(LISA) project.展开更多
In the single degenerate (SD) scenario for type Ia supernovae (SNe Ia), a mass-accreting white dwarf is expected to experience a supersoft X-ray source (SSS) phase. However, some recent observations showed that ...In the single degenerate (SD) scenario for type Ia supernovae (SNe Ia), a mass-accreting white dwarf is expected to experience a supersoft X-ray source (SSS) phase. However, some recent observations showed that the expected number of massaccreting WDs is much lower than that predicted from theory, regardless of whether they are in spiral or elliptical galaxies. In this paper, we performed a binary population synthesis study on the relative duration of the SSS phase to their whole mass-increasing phase of WDs leading to SNe Ia. We found that for about 40% of the progenitor systems, the relative duration is shorter than 2% and the evolution of the mean relative duration shows that it is always smaller than 5%, both for young and old SNe Ia. In addition, before the SNe Ia explosions, more than 55% of the progenitor systems were experiencing a dwarf novae phase and no more than 10% were staying in the SSS phase. These results are consistent with the recent observations and imply that both in early- and late-type galaxies, only a small fraction of mass-accreting WDs resulting in SNe Ia contributes to the supersoft X-ray flux. So, although our results are not directly related to the X-ray output of the SN Ia progenitor, the low supersoft X- ray luminosity observed in early type galaxies may not be able to exclude the validity of the SD model. On the contrary, it is evidence to support the SD scenario.展开更多
We investigate the spectral evolution of white dwarfs by considering the effects of hydrogen mass in the atmosphere and convective overshooting above the convection zone. Our numerical results show that white dwarfs w...We investigate the spectral evolution of white dwarfs by considering the effects of hydrogen mass in the atmosphere and convective overshooting above the convection zone. Our numerical results show that white dwarfs with MH- 10^-16 MG show the DA spectral type between 46 000 ≤ Teff≤ 26 000 K and the DO or DB spectral type may appear on either side of this temperature range. White dwarfs with MH - 10^-15 M⊙ appear as DA stars until they cool to Teff - 31 000 K; from then on they will evolve into DB white dwarfs as a result of convective mixing. If MH in the white dwarfs is more than 10-14 M⊙, the convective mixing will not occur when Teff 〉 20 000 K, thus these white dwarfs always appear as DA stars. White dwarfs within the temperature range 46 000 ≤ Teff ≤ 31 000 K always show the DA spectral type, which coincides with the DB gap. We notice the importance of the convective overshooting and suggest that the overshooting length should be proportional to the thickness of the convection zone to better fit the observations.展开更多
In this study, we employ machine learning to build a catalog of DB white dwarfs(DBWDs) from the LAMOST Data Release(DR) 5. Using known DBs from SDSS DR14, we selected samples of highquality DB spectra from the LAMOST ...In this study, we employ machine learning to build a catalog of DB white dwarfs(DBWDs) from the LAMOST Data Release(DR) 5. Using known DBs from SDSS DR14, we selected samples of highquality DB spectra from the LAMOST database and applied them to train the machine learning process.Following the recognition procedure, we chose 351 DB spectra of 287 objects, 53 of which were new identifications. We then utilized all the DBWD spectra from both SDSS DR14 and LAMOST DR5 to construct DB templates for LAMOST 1 D pipeline reductions. Finally, by applying DB parameter models provided by D. Koester and the distance from Gaia DR2, we calculated the effective temperatures, surface gravities and distributions of the 3 D locations and velocities of all DBWDs.展开更多
We show that, by appealing to a Quark-Nova (QN) in a tight binary system containing a massive neutron star and a CO white dwarf (WD), a Type Ia explosion could occur. The QN ejecta collides with the WD, driving a ...We show that, by appealing to a Quark-Nova (QN) in a tight binary system containing a massive neutron star and a CO white dwarf (WD), a Type Ia explosion could occur. The QN ejecta collides with the WD, driving a shock that triggers carbon burning under degenerate conditions (the QN-Ia). The conditions in the compressed low-mass WD (MwD 〈 0.9 M) in our model mimic those of a Chandrasekhar mass WD. The spin-down luminosity from the QN compact remnant (the quark star) pro- vides additional power that makes the QN-Ia light-curve brighter and broader than a standard SN-Ia with similar 56Ni yield. In QNe-Ia, photometry and spectroscopy are not necessarily linked since the kinetic energy of the ejecta has a contribution from spin-down power and nuclear decay. Although QNe-Ia may not obey the Phillips relationship, their brightness and their relatively "normal looking" light-curves mean they could be included in the cosmological sample. Light-curve fitters would be con- fused by the discrepancy between spectroscopy at peak and photometry and would correct for it by effectively brightening or dimming the QNe-Ia apparent magnitudes, thus over- or under-estimating the true magnitude of these spin-down powered SNe-Ia. Contamination of QNe-Ia in samples of SNe-Ia used for cosmological analyses could systematically bias measurements of cosmological parameters if QNe-Ia are numerous enough at high-redshift. The strong mixing induced by spin-down wind combined with the low 56Ni yields in QNe-Ia means that these would lack a secondary maximum in the/-band despite their luminous nature. We discuss possible QNe-Ia progenitors.展开更多
This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf ...This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Models and predictions of electron cyclotron masers from unipolar-inductor compact binaries and unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in compact binaries are briefly discussed.展开更多
The Ultra Violet Imaging Telescope (UVIT) is one of the payloads on the first Indian multiwavelength satellite ASTROSAT, which is expected to be launched by the Indian Space Research Organisation (ISRO) in the yea...The Ultra Violet Imaging Telescope (UVIT) is one of the payloads on the first Indian multiwavelength satellite ASTROSAT, which is expected to be launched by the Indian Space Research Organisation (ISRO) in the year 2015. We have per- formed simulations of UV studies of old open clusters for the UVIT. The colour mag- nitude diagrams (CMDs) and spatial appearances have been created using 10 filters associated with the FUV channel (130-180 nm) and NUV channel (200-300 nm) that are available for observations on the UVIT, for the three old open clusters M67, NGC 188 and NGC 6791. The CMDs are simulated for different filter combinations, and they are used to identify the loci of various evolutionary sequences, white dwarfs, blue stragglers, red giants, subgiants, turn off stars and the main sequence of the clus- ters. The present work helps in identifying a potential area of study in the case of these three old open clusters by considering the availability of filters and the detection limits of the instrument. We also recommend filter combinations, which can be used to detect and study the above mentioned evolutionary stages. The simulations and the results presented here are essential for the optimal use of the UVIT for studies of old open clusters.展开更多
文摘Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite the highly successful use of these events in this capacity, many fundamental questions remain. Contemporary research inves- tigates how properties of the progenitor system that follow from the host galaxy such as composition and age influence the brightness of an event with the goal of better understanding and assessing the intrinsic scatter in the brightness. We provide an overview of these supernovae and proposed progenitor systems, all of which involve one or more compact stars known as white dwarfs. We describe contemporary research investigating how the composition and structure of the progenitor white dwarf systematically influences the explosion outcome assuming the progenitor is a single white dwarf that has gained mass from a companion. We present results illustrating some of these systematic effects from our research.
文摘This review considers the observations of hot, hydrogen-rich white dwarfstars, with particular reference to measurements of temperature, surface gravity and composition.Spectroscopic data from a variety of wavelength ranges are required for this work and, inparticular, the important contributions from optical, ultraviolet and extreme ultraviolet studiesare discussed. Using the values of T_(eff) and log g determined for an individual white dwarf,estimates of mass and radius might be derived from the theoretical mass-radius relation. The issueof the accuracy of the theoretical mass-radius calculations and the prospects for making empiricaltests using observational data are outlined.
基金the Ministry of Human Resource Development, Government of India, for financial support through a doctoral fellowship
文摘The equation of state of the electron degenerate gas in a white dwarf is usually treated by employing the ideal dispersion relation.However, the effect of quantum gravity is expected to be inevitably present and when this effect is considered through a non-commutative formulation, the dispersion relation undergoes a substantial modification.In this paper, we take such a modified dispersion relation and find the corresponding equation of state for the degenerate electron gas in white dwarfs.Hence we solve the equation of hydrostatic equilibrium and find that this leads to the possibility of the existence of excessively high values of masses exceeding the Chandrasekhar limit, although the quantum gravity effect is taken to be very small.It is only when we impose the additional effect of neutronization that we obtain white dwarfs with masses close to the Chandrasekhar limit with nonzero radii at the neutronization threshold.We demonstrate these results by giving numerical estimates for the masses and radii of helium, carbon and oxygen white dwarfs.
基金supported by the CAS ‘Light of West China’ program(2015-XBQNA-02)the National Natural Science Foundation of China(NSFC,Grant Nos.10933002,11703001 and 11273007)+5 种基金the Joint Research Fund in Astronomy(U1631236) under cooperative agreement between the NSFC and the Chinese Academy of Sciences(CAS)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB2304100)the China Postdoctoral Science Foundationthe Fundamental Research Funds for the Central UniversitiesThe Armagh Observatory and Planetarium are supported by a grant from the Northern Ireland Department for Communitiessupport from the UK Science and Technology Facilities Council(STFC)(Grant No.ST/M000834/1)
文摘Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation.However,a significant fraction with low mass ratios will survive for a long time as a consequence of stable mass transfer.Such stable mass transfer between two helium white dwarfs(He WDs) provides one channel for the production of AM CVn binary stars.In previous calculations of double He WD progenitors,the accreting He WD was treated as a point mass.We have computed the evolution of 16 double He WD models in order to investigate the consequences of treating the evolution of both components in detail.We find that the boundary between binaries having stable and unstable mass transfer is slightly modified by this approach.By comparing with observed periods and mass ratios,we redetermine masses of eight known AM CVn stars by our double He WDs channel,i.e.HM Cnc,AM CVn,V406 Hya,J0926,J1240,GP Com,Gaia14 aae and V396 Hya.We propose that central spikes in the triple-peaked emission spectra of J1240,GP Com and V396 Hya and the surface abundance ratios of N/C/O in GP Com can be explained by the stable double He WD channel.The mass estimates derived from our calculations are used to discuss the predicted gravitational wave signal in the context of the Laser Interferometer Space Antenna(LISA) project.
基金supported by the National Natural Science Foundation of China under Grant No. 11003003the Project of the Fundamental and Frontier Research of Henan Province (102300410223)+1 种基金the Project of Science and Technology from the Ministry of Education (211102)the China Postdoctoral Science Foundation funded project 20100480222
文摘In the single degenerate (SD) scenario for type Ia supernovae (SNe Ia), a mass-accreting white dwarf is expected to experience a supersoft X-ray source (SSS) phase. However, some recent observations showed that the expected number of massaccreting WDs is much lower than that predicted from theory, regardless of whether they are in spiral or elliptical galaxies. In this paper, we performed a binary population synthesis study on the relative duration of the SSS phase to their whole mass-increasing phase of WDs leading to SNe Ia. We found that for about 40% of the progenitor systems, the relative duration is shorter than 2% and the evolution of the mean relative duration shows that it is always smaller than 5%, both for young and old SNe Ia. In addition, before the SNe Ia explosions, more than 55% of the progenitor systems were experiencing a dwarf novae phase and no more than 10% were staying in the SSS phase. These results are consistent with the recent observations and imply that both in early- and late-type galaxies, only a small fraction of mass-accreting WDs resulting in SNe Ia contributes to the supersoft X-ray flux. So, although our results are not directly related to the X-ray output of the SN Ia progenitor, the low supersoft X- ray luminosity observed in early type galaxies may not be able to exclude the validity of the SD model. On the contrary, it is evidence to support the SD scenario.
基金supported by the National Key Fundamental Research Project through grant 2007CB815406
文摘We investigate the spectral evolution of white dwarfs by considering the effects of hydrogen mass in the atmosphere and convective overshooting above the convection zone. Our numerical results show that white dwarfs with MH- 10^-16 MG show the DA spectral type between 46 000 ≤ Teff≤ 26 000 K and the DO or DB spectral type may appear on either side of this temperature range. White dwarfs with MH - 10^-15 M⊙ appear as DA stars until they cool to Teff - 31 000 K; from then on they will evolve into DB white dwarfs as a result of convective mixing. If MH in the white dwarfs is more than 10-14 M⊙, the convective mixing will not occur when Teff 〉 20 000 K, thus these white dwarfs always appear as DA stars. White dwarfs within the temperature range 46 000 ≤ Teff ≤ 31 000 K always show the DA spectral type, which coincides with the DB gap. We notice the importance of the convective overshooting and suggest that the overshooting length should be proportional to the thickness of the convection zone to better fit the observations.
基金funded by the National Basic Research Program of China (973 program, 2014CB845700)the National Natural Science Foundation of China (Grant No. 11390371/4)+1 种基金The Guo Shou Jing Telescope (the Large Sky Area Multiobject Fiber Spectroscopic Telescope, LAMOST) is a National Major Scientific Project built by the Chinese Academy of Sciencesprovided by the National Development and Reform Commission
文摘In this study, we employ machine learning to build a catalog of DB white dwarfs(DBWDs) from the LAMOST Data Release(DR) 5. Using known DBs from SDSS DR14, we selected samples of highquality DB spectra from the LAMOST database and applied them to train the machine learning process.Following the recognition procedure, we chose 351 DB spectra of 287 objects, 53 of which were new identifications. We then utilized all the DBWD spectra from both SDSS DR14 and LAMOST DR5 to construct DB templates for LAMOST 1 D pipeline reductions. Finally, by applying DB parameter models provided by D. Koester and the distance from Gaia DR2, we calculated the effective temperatures, surface gravities and distributions of the 3 D locations and velocities of all DBWDs.
文摘We show that, by appealing to a Quark-Nova (QN) in a tight binary system containing a massive neutron star and a CO white dwarf (WD), a Type Ia explosion could occur. The QN ejecta collides with the WD, driving a shock that triggers carbon burning under degenerate conditions (the QN-Ia). The conditions in the compressed low-mass WD (MwD 〈 0.9 M) in our model mimic those of a Chandrasekhar mass WD. The spin-down luminosity from the QN compact remnant (the quark star) pro- vides additional power that makes the QN-Ia light-curve brighter and broader than a standard SN-Ia with similar 56Ni yield. In QNe-Ia, photometry and spectroscopy are not necessarily linked since the kinetic energy of the ejecta has a contribution from spin-down power and nuclear decay. Although QNe-Ia may not obey the Phillips relationship, their brightness and their relatively "normal looking" light-curves mean they could be included in the cosmological sample. Light-curve fitters would be con- fused by the discrepancy between spectroscopy at peak and photometry and would correct for it by effectively brightening or dimming the QNe-Ia apparent magnitudes, thus over- or under-estimating the true magnitude of these spin-down powered SNe-Ia. Contamination of QNe-Ia in samples of SNe-Ia used for cosmological analyses could systematically bias measurements of cosmological parameters if QNe-Ia are numerous enough at high-redshift. The strong mixing induced by spin-down wind combined with the low 56Ni yields in QNe-Ia means that these would lack a secondary maximum in the/-band despite their luminous nature. We discuss possible QNe-Ia progenitors.
文摘This article reviews the current works on ultra-compact double-degenerate binaries in the presence of magnetic interaction, in particular, unipolar induction. The orbital dynamics and evolution of compact white-dwarf pairs are discussed in detail. Models and predictions of electron cyclotron masers from unipolar-inductor compact binaries and unipolar-inductor white-dwarf planetary systems are presented. Einstein-Laub effects in compact binaries are briefly discussed.
文摘The Ultra Violet Imaging Telescope (UVIT) is one of the payloads on the first Indian multiwavelength satellite ASTROSAT, which is expected to be launched by the Indian Space Research Organisation (ISRO) in the year 2015. We have per- formed simulations of UV studies of old open clusters for the UVIT. The colour mag- nitude diagrams (CMDs) and spatial appearances have been created using 10 filters associated with the FUV channel (130-180 nm) and NUV channel (200-300 nm) that are available for observations on the UVIT, for the three old open clusters M67, NGC 188 and NGC 6791. The CMDs are simulated for different filter combinations, and they are used to identify the loci of various evolutionary sequences, white dwarfs, blue stragglers, red giants, subgiants, turn off stars and the main sequence of the clus- ters. The present work helps in identifying a potential area of study in the case of these three old open clusters by considering the availability of filters and the detection limits of the instrument. We also recommend filter combinations, which can be used to detect and study the above mentioned evolutionary stages. The simulations and the results presented here are essential for the optimal use of the UVIT for studies of old open clusters.