采用圆缺型药型罩线性装药结构,设定线性装药两端面中心同时起爆,该文对两端同时起爆条件下基于爆轰波碰撞形成的LEFP(Linear Explosively Formed Penetrators)进行了研究。首先开展爆轰波碰撞的理论压力计算,探究了形成LEFP的压力条件...采用圆缺型药型罩线性装药结构,设定线性装药两端面中心同时起爆,该文对两端同时起爆条件下基于爆轰波碰撞形成的LEFP(Linear Explosively Formed Penetrators)进行了研究。首先开展爆轰波碰撞的理论压力计算,探究了形成LEFP的压力条件,然后利用LS-DYNA软件对LEFP进行数值模拟,同时结合脉冲X光捕捉LEFP的成型实验和在不同炸高下LEFP的侵彻实验,详细阐明了LEFP的成型机理。理论分析、数值模拟和实验结果三者表明:基于爆轰波碰撞条件下圆缺型药型罩线性装药结构可形成具有较大长径比的LEFP。展开更多
The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Exp...The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Experimental investigations were performed by optical microscopy, scanning electron microscopy, and microhardness and shear tensile strength testing. Prior to heat treatment, increasing the stand-off distance between samples from 1 to 2.5 mm caused their interface to become wavy and the thickness of intermetallic layers to increase from 3.5 to 102.3 μm. The microhardness increased from HV 766 in the sample prepared at a stand-off distance of 1 mm to HV 927 in the sample prepared at a stand-off distance of 2.5 mm; in addition, the sample strength increased from 103.2 to 214.5 MPa. Heat treatment at 450°C for 6 h increased the thickness of intermetallic compound layers to 4.4 and 118.5 μm in the samples prepared at stand-off distances of 1 and 2.5 mm, respectively. These results indicated that increasing the duration and temperature of heat treatment decreased the microhardness and strength of the interface of explosively welded stainless steel 321-Al 1230 and increased the thickness of the intermetallic region.展开更多
In this study, a stand-off and collinear double pulse laser-induced breakdown spectroscopy (DP LIBS) system was designed, and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measure...In this study, a stand-off and collinear double pulse laser-induced breakdown spectroscopy (DP LIBS) system was designed, and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measured. The effect of inter-pulse delay on spectra was studied, and the signal enhancement was observed compared to the single pulse LIBS (SP LIBS). The morphology of the ablated crater on the sample indicated a higher efficiency of surface pretreatment in DP LIBS. The calibration curves of Ytterbium (Y) and Zirconium (Zr) were investigated. The square of the correlation coefficient of the calibration curve of element Y reached up to 0.9998.展开更多
We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advan...We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advantage of the present approach is allowing an analytic solution without involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects of some important physical quantities therefore can be fully revealed via the analytic solution. By combining the current solution with Ideal Dissociating Gas(IDG) model, we investigate the effects of free stream kinetic energy and free stream dissociation level(which can be very different between different facilities) on the shock stand-off distance.展开更多
This study proposes a quasi-one-dimensional model to predict the chemical nonequilibrium flow along the stagnation streamline of hypersonic flow past a blunt body. The model solves reduced equations along the stagnati...This study proposes a quasi-one-dimensional model to predict the chemical nonequilibrium flow along the stagnation streamline of hypersonic flow past a blunt body. The model solves reduced equations along the stagnation streamline and predicts nearly identical results as the numerical solution of the full-field Navier-Stokes equations. The high efficiency of this model makes it useful to investigate the overall quantitative behavior of related physical-chemical phenomena. In this paper two important properties of hypersonic flow, shock stand-off distance and oxygen dissociation, are studied using the quasi-one-dimensional model with the ideal dissociating gas model. It is found that the shock stand-off distance is affected by both chemical and thermal non-equilibrium.The shock stand-off distance will increase when the flow conditions are changed from equilibrium to non-equilibrium, because the average density of the shock-compressed gas will decrease as a result of the increase in translational energy. For oxygen dissociation, the maximum value of its dissociation degree along the stagnation line varies with the flight altitude. It is increased at first and decreased thereafter with the altitude, which is due to the combination effect of the equilibrium shift and chemical non-equilibrium relaxation. The overall variation of the maximum dissociation is then plotted in the speed and altitude coordinates as a reference for engineering application.展开更多
Fluid jet polishing(FJP)is a versatile polishing process that has many advantages compared to other polishing processes.Stand-off distance(SOD)is one of the key parameters in flu id jet polishi ng.However,relatively l...Fluid jet polishing(FJP)is a versatile polishing process that has many advantages compared to other polishing processes.Stand-off distance(SOD)is one of the key parameters in flu id jet polishi ng.However,relatively little research work has been carried out to investigate its effect of SOD on material removal characteristics and surface generation in FJP.In this paper,a systematic investigation of the effect of SOD on the tool influence function and surface topography in FJP was conducted.Experiments were designed for FJP two kinds of materials corresponding to ductile and brittle materials.They are nickel copper(NiCu)alloy and BK7 optical glass,respectively.In this study,the SOD was varied from 2 to 35 mm.Analysis and discussions were made on its effect on the shape of TIF,material removal rate,and surface topography.It is interesting to note that the TIF shape becomes a Gaussian-like shape with large SOD both on NiCu and BK7,which provides a novel way to optimize the TIF in FJP.The variation of the material removal rate and surface roughness versus SOD on NiCu and BK7 were also determined from the experimental results.Moreover,the surface topography of NiCu and BK7 were characterized from the results measured from the white light interferometer and scan electron microscope.The outcome of the study provides a better understanding of the material removal characteristics and surface generation mechanism in FJP.展开更多
In this paper eight successive experimental blast tests with an increasing TNT equivalent charge weights ranging from 0.56 kg to 17.78 kg were conducted on unreinforced,ferrocemented overlay masonry and confined mason...In this paper eight successive experimental blast tests with an increasing TNT equivalent charge weights ranging from 0.56 kg to 17.78 kg were conducted on unreinforced,ferrocemented overlay masonry and confined masonry walls.The pressure-time history caused by the blast was recorded by pressure sensors installed on the test specimen.The resulting damage pattern was observed during each test.Weak zones in the three systems of masonry were identified.Scaled distances for different damage levels in the three masonry systems were experimentally obtained.The results provide a basis for determining the response of each masonry system against blast loading.Consequently,efficiency of ferrocemented overlay masonry and confined masonry was found established in mitigation against blast loads.展开更多
文摘采用圆缺型药型罩线性装药结构,设定线性装药两端面中心同时起爆,该文对两端同时起爆条件下基于爆轰波碰撞形成的LEFP(Linear Explosively Formed Penetrators)进行了研究。首先开展爆轰波碰撞的理论压力计算,探究了形成LEFP的压力条件,然后利用LS-DYNA软件对LEFP进行数值模拟,同时结合脉冲X光捕捉LEFP的成型实验和在不同炸高下LEFP的侵彻实验,详细阐明了LEFP的成型机理。理论分析、数值模拟和实验结果三者表明:基于爆轰波碰撞条件下圆缺型药型罩线性装药结构可形成具有较大长径比的LEFP。
文摘The effects of heat treatment on the microstructure and mechanical properties of intermetallic compounds in the interface of stainless steel 321 explosively bonded to aluminum 1230 were investigated in this study. Experimental investigations were performed by optical microscopy, scanning electron microscopy, and microhardness and shear tensile strength testing. Prior to heat treatment, increasing the stand-off distance between samples from 1 to 2.5 mm caused their interface to become wavy and the thickness of intermetallic layers to increase from 3.5 to 102.3 μm. The microhardness increased from HV 766 in the sample prepared at a stand-off distance of 1 mm to HV 927 in the sample prepared at a stand-off distance of 2.5 mm; in addition, the sample strength increased from 103.2 to 214.5 MPa. Heat treatment at 450°C for 6 h increased the thickness of intermetallic compound layers to 4.4 and 118.5 μm in the samples prepared at stand-off distances of 1 and 2.5 mm, respectively. These results indicated that increasing the duration and temperature of heat treatment decreased the microhardness and strength of the interface of explosively welded stainless steel 321-Al 1230 and increased the thickness of the intermetallic region.
基金supported by National Natural Science Foundation of China(No.61473279)the National High-Tech Research and Development Program of China(863 Program)(No.2012AA040608)Equipment Development Programs of the Chinese Academy of Sciences(No.YZ201247)
文摘In this study, a stand-off and collinear double pulse laser-induced breakdown spectroscopy (DP LIBS) system was designed, and the magnesium alloy samples at a distance of 2.5 m away from the LIBS system were measured. The effect of inter-pulse delay on spectra was studied, and the signal enhancement was observed compared to the single pulse LIBS (SP LIBS). The morphology of the ablated crater on the sample indicated a higher efficiency of surface pretreatment in DP LIBS. The calibration curves of Ytterbium (Y) and Zirconium (Zr) were investigated. The square of the correlation coefficient of the calibration curve of element Y reached up to 0.9998.
基金co-supported by the Research Grants Council of Hong Kong,China(No.C5010-14E)the National Natural Science Foundation of China(No.11372265)
文摘We derived a theoretical solution of the shock stand-off distance for a non-equilibrium flow over spheres based on Wen and Hornung's solution and Olivier's solution. Compared with previous approaches, the main advantage of the present approach is allowing an analytic solution without involving any semi-empirical parameter for the whole non-equilibrium flow regimes. The effects of some important physical quantities therefore can be fully revealed via the analytic solution. By combining the current solution with Ideal Dissociating Gas(IDG) model, we investigate the effects of free stream kinetic energy and free stream dissociation level(which can be very different between different facilities) on the shock stand-off distance.
基金supported by the National Natural Science Foundation of China (Nos. 1372325 and 91116013)
文摘This study proposes a quasi-one-dimensional model to predict the chemical nonequilibrium flow along the stagnation streamline of hypersonic flow past a blunt body. The model solves reduced equations along the stagnation streamline and predicts nearly identical results as the numerical solution of the full-field Navier-Stokes equations. The high efficiency of this model makes it useful to investigate the overall quantitative behavior of related physical-chemical phenomena. In this paper two important properties of hypersonic flow, shock stand-off distance and oxygen dissociation, are studied using the quasi-one-dimensional model with the ideal dissociating gas model. It is found that the shock stand-off distance is affected by both chemical and thermal non-equilibrium.The shock stand-off distance will increase when the flow conditions are changed from equilibrium to non-equilibrium, because the average density of the shock-compressed gas will decrease as a result of the increase in translational energy. For oxygen dissociation, the maximum value of its dissociation degree along the stagnation line varies with the flight altitude. It is increased at first and decreased thereafter with the altitude, which is due to the combination effect of the equilibrium shift and chemical non-equilibrium relaxation. The overall variation of the maximum dissociation is then plotted in the speed and altitude coordinates as a reference for engineering application.
基金The work described in this paper was mainly supported by General Research Fund from the Research Grants Council(Project No.:15200119)Innovation and Technology Commission(ITC)(Project No.:ITS/076/18FP)of Hong Kong Special Administrative Region(HKSAR),Chinathe financial support from the Guangdong Natural Science Foundation Programme 2019-2020(Project No.:2O19A1515O12O15).
文摘Fluid jet polishing(FJP)is a versatile polishing process that has many advantages compared to other polishing processes.Stand-off distance(SOD)is one of the key parameters in flu id jet polishi ng.However,relatively little research work has been carried out to investigate its effect of SOD on material removal characteristics and surface generation in FJP.In this paper,a systematic investigation of the effect of SOD on the tool influence function and surface topography in FJP was conducted.Experiments were designed for FJP two kinds of materials corresponding to ductile and brittle materials.They are nickel copper(NiCu)alloy and BK7 optical glass,respectively.In this study,the SOD was varied from 2 to 35 mm.Analysis and discussions were made on its effect on the shape of TIF,material removal rate,and surface topography.It is interesting to note that the TIF shape becomes a Gaussian-like shape with large SOD both on NiCu and BK7,which provides a novel way to optimize the TIF in FJP.The variation of the material removal rate and surface roughness versus SOD on NiCu and BK7 were also determined from the experimental results.Moreover,the surface topography of NiCu and BK7 were characterized from the results measured from the white light interferometer and scan electron microscope.The outcome of the study provides a better understanding of the material removal characteristics and surface generation mechanism in FJP.
文摘In this paper eight successive experimental blast tests with an increasing TNT equivalent charge weights ranging from 0.56 kg to 17.78 kg were conducted on unreinforced,ferrocemented overlay masonry and confined masonry walls.The pressure-time history caused by the blast was recorded by pressure sensors installed on the test specimen.The resulting damage pattern was observed during each test.Weak zones in the three systems of masonry were identified.Scaled distances for different damage levels in the three masonry systems were experimentally obtained.The results provide a basis for determining the response of each masonry system against blast loading.Consequently,efficiency of ferrocemented overlay masonry and confined masonry was found established in mitigation against blast loads.