期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
深度学习在电力负荷预测中的应用 被引量:33
1
作者 张建寰 吉莹 陈立东 《自动化仪表》 CAS 2019年第8期8-12,17,共6页
针对电力负荷预测中存在的随机性、不确定性的问题,结合深度学习算法具有很强的自适应感知能力等特点,采用目前较为主流的深度学习方法,如长短时记忆(LSTM)网络、门循环单元(GRU)神经网络和栈式自编码器(SAE),分别研究其应用于电力负荷... 针对电力负荷预测中存在的随机性、不确定性的问题,结合深度学习算法具有很强的自适应感知能力等特点,采用目前较为主流的深度学习方法,如长短时记忆(LSTM)网络、门循环单元(GRU)神经网络和栈式自编码器(SAE),分别研究其应用于电力负荷预测时的效果。研究发现,将历史负荷数据作为三种深度学习预测模型的输入时,三种预测模型的负荷预测精度指标评估结果各有不同。因此,为了全面评估三种预测模型的预测效果,提出将不同时间段内的相同历史负荷数据作为预测模型输入对比各模型的负荷预测精度,从中找出最佳的预测模型。仿真结果验证了三种预测模型在电力负荷预测应用中的可行性,且发现在单输入因素时LSTM模型的预测精度相对较高。因此,在后续研究中,可以考虑以LSTM预测模型作为基础预测模型,结合更多的负荷影响因素进行改进,以提高负荷预测精度。 展开更多
关键词 深度学习 长短时记忆 门循环单元 循环神经网络 栈式自编码器 负荷预测 预测精度
下载PDF
基于栈式自编码器的磁探测电阻抗成像算法研究 被引量:8
2
作者 陈瑞娟 戚昊峰 +2 位作者 李炳南 王慧泉 王金海 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第1期257-264,共8页
针对目前磁探测电阻抗成像算法图像重建分辨率不高、精确度低的问题,提出了一种基于栈式自编码(SAE)神经网络的磁探测电阻抗成像算法。使用方形成像体进行仿真实验,通过训练样本建立SAE神经网络模型,确定神经元权重和偏置值。利用该网... 针对目前磁探测电阻抗成像算法图像重建分辨率不高、精确度低的问题,提出了一种基于栈式自编码(SAE)神经网络的磁探测电阻抗成像算法。使用方形成像体进行仿真实验,通过训练样本建立SAE神经网络模型,确定神经元权重和偏置值。利用该网络模型重建成像体内部的电导率分布;并在异质体中心位置、算法的抗噪性能等方面将重建结果与基于Levenberg-Marquardt算法的反向传播神经网络的重建结果进行对比。结果表明栈式自编码神经网络算法显著提高了磁探测电阻抗成像的重建精度、抗噪性能。最后,通过仿体实验验证了SAE算法的可行性。根据实际测得的磁场,使用神经网络算法重建电导率,准确定位异质体位置。SAE神经网络算法的提出对于磁探测电阻抗成像技术的广泛应用具有重要意义。 展开更多
关键词 磁探测电阻抗成像 逆问题 栈式自编码 反向传播神经网络
下载PDF
基于SAE-GA-SVM模型的雷达新型干扰识别 被引量:7
3
作者 罗彬珅 刘利民 +1 位作者 董健 刘璟麒 《计算机工程》 CAS CSCD 北大核心 2020年第6期281-287,共7页
针对频谱弥散干扰、切片组合干扰、灵巧噪声干扰、噪声调幅-距离欺骗加性复合干扰与噪声调频-距离欺骗加性复合干扰5种干扰类型的识别问题,提出一种基于SAE-GA-SVM的检测模型算法。建立目标回波与干扰信号的数学模型,采用多域联合的特... 针对频谱弥散干扰、切片组合干扰、灵巧噪声干扰、噪声调幅-距离欺骗加性复合干扰与噪声调频-距离欺骗加性复合干扰5种干扰类型的识别问题,提出一种基于SAE-GA-SVM的检测模型算法。建立目标回波与干扰信号的数学模型,采用多域联合的特征提取方法提取47维特征。为有效去除冗余信息并保持较高的识别率,运用深度学习中的稀疏自编码器(SAE),通过SAE结构建立高维空间和低维空间的双向映射,从而获得原始数据的相应最优低维表示。利用遗传算法优化支持向量机的惩罚因子和核函数参数,构建基于SAE-GA-SVM的雷达新型干扰识别检测模型。仿真结果表明,该模型能够有效降低特征维度,相比传统的GA-SVM检测模型识别准确率提高10%。 展开更多
关键词 新型干扰 特征提取 特征降维 堆叠自编码器 遗传算法
下载PDF
基于深度稀疏自编码器的电抗器机械故障振动诊断方法
4
作者 刘锦伟 周杰 +2 位作者 李川 肖潇 伍惠铖 《电气传动》 2024年第9期83-89,共7页
为提高电抗器机械故障智能诊断的准确性,基于电抗器振动信号与机械状态之间的关联特性和规律,提出了一种基于深度稀疏自编码器(SAE)的电抗器机械故障振动诊断方法。首先,采用小波包分解算法对电抗器原始振动信号进行分解,提取信号的时... 为提高电抗器机械故障智能诊断的准确性,基于电抗器振动信号与机械状态之间的关联特性和规律,提出了一种基于深度稀疏自编码器(SAE)的电抗器机械故障振动诊断方法。首先,采用小波包分解算法对电抗器原始振动信号进行分解,提取信号的时频能量矩阵;然后,构建基于SAE网络的电抗器机械故障诊断模型,通过无监督自学习和有监督微调完成时频能量矩阵深层特征挖掘和电抗器机械故障识别分类;最后,以某10 kV油浸式电抗器为试验对象,使用不同机械状态下的振动数据对故障识别模型进行训练优化。算例结果表明,相比于传统振动诊断方法,所提方法能够更好地对电抗器机械故障进行识别分类,准确率可达98%。 展开更多
关键词 电抗器 机械故障 振动信号 小波包分解 深度稀疏自编码器
下载PDF
一种基于SAE-RF算法的配电变压器故障诊断方法 被引量:5
5
作者 陈锦锋 张军财 +3 位作者 卢思佳 高伟 范贤盛 陈致远 《电工电气》 2021年第2期17-23,共7页
为有效解决配电变压器故障诊断中面临的数据特征人工提取、机器学习调参困难等问题,提出了一种基于堆栈自编码器(SAE)和随机森林(RF)组合的配电变压器故障诊断方法。建立SAE配电变压器故障特征自动挖掘模型,利用大量的无标签数据对SAE... 为有效解决配电变压器故障诊断中面临的数据特征人工提取、机器学习调参困难等问题,提出了一种基于堆栈自编码器(SAE)和随机森林(RF)组合的配电变压器故障诊断方法。建立SAE配电变压器故障特征自动挖掘模型,利用大量的无标签数据对SAE模型中的每一个自编码器进行逐层无监督训练,通过贝叶斯优化算法自动选择模型的最优参数;通过有标签数据对模型参数进行有监督细调,挖掘出能够代表各种故障本质属性的特征量;创建一个RF分类器对故障类型进行辨识,调参过程同样实现参数的自动寻优。试验结果表明,所提方法对配电变压器故障诊断准确率达到96.67%,显著优于单独使用SAE和RF的分类结果。 展开更多
关键词 配电变压器 故障诊断 堆栈自编码器 随机森林 贝叶斯优化
下载PDF
基于SAE和GNDO-SVM的脑电信号情绪识别
6
作者 陈晨 任南 《计算机系统应用》 2023年第10期284-292,共9页
情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信... 情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信号进行深度特征提取,并提出一种基于广义正态分布优化的支持向量机(generalized normal distribution optimization based support vector machine, GNDO-SVM)情绪识别模型.实验结果表明,与基于遗传算法、粒子群算法和麻雀搜索算法优化的支持向量机模型相比,所提出的GNDO-SVM模型具有更优的分类性能,基于SAE深度特征的情感识别准确率达到了90.94%,表明SAE能够有效地挖掘EEG信号不同通道间的深度相关性信息.因此,利用SAE深度特征结合GNDO-SVM模型可以有效地实现EEG信号的情绪识别. 展开更多
关键词 脑电信号 情绪识别 深度特征 堆叠自动编码器 广义正态分布优化 支持向量机
下载PDF
核电站智能故障预警与诊断方案研究 被引量:1
7
作者 王梦月 李鸣谦 万欣 《自动化仪表》 CAS 2023年第2期65-68,共4页
为了解决核电站故障识别难度高、工作量大的问题,从核电站对故障预警和诊断的功能需求出发,通过分析多种智能算法和核电站应用场景的适配性,提出了基于卷积神经网络(CNN)、堆叠自编码(SAE)网络、故障树分析(FTA)等先进技术的核电站智能... 为了解决核电站故障识别难度高、工作量大的问题,从核电站对故障预警和诊断的功能需求出发,通过分析多种智能算法和核电站应用场景的适配性,提出了基于卷积神经网络(CNN)、堆叠自编码(SAE)网络、故障树分析(FTA)等先进技术的核电站智能故障预警和诊断功能模块设计方案。该方案将提升核电站智能化水平,实现智能化、自动化的故障监视和诊断,为运行人员提供决策支持,减轻运行人员工作负担,提高故障处理的安全性和时效性。 展开更多
关键词 核电站 故障预警 故障诊断 卷积神经网络 堆叠自编码网络 故障树分析
下载PDF
基于堆栈自编码网络的铣刀磨损特征提取方法
8
作者 王明微 高静 +3 位作者 李智昂 周竞涛 蔡闻峰 龚菊贤 《上海航天(中英文)》 CSCD 2022年第5期79-87,共9页
针对传统切削数据人工提取的特征主观性和盲目性强、特征提取过程耗时且提取质量难以保证等问题,提出一种基于堆栈自编码网络(SAE)的切削信号数据特征提取方法,构建了由3个自动编码器(AE)组成的SAE网络。前一个AE无监督训练后得到隐藏... 针对传统切削数据人工提取的特征主观性和盲目性强、特征提取过程耗时且提取质量难以保证等问题,提出一种基于堆栈自编码网络(SAE)的切削信号数据特征提取方法,构建了由3个自动编码器(AE)组成的SAE网络。前一个AE无监督训练后得到隐藏层特征,作为下一个AE的输入,最后整体利用反向传播算法进行有监督微调,从而得到更优的特征表达。从基于SAE的数据重构性能分析和加工信号特征主成分分析2个层面,对切削信号特征提取的优劣进行评估。实例验证说明,相比于传统手工提取特征的方法,所提方法在压缩信号的特征提取方面表现出明显的优势,进一步说明了SAE特征提取的有效性。 展开更多
关键词 切削加工 特征提取 堆栈自编码网络(sae) 磨损预测
下载PDF
基于栈式自编码器特征融合的SAR图像车辆目标识别 被引量:18
9
作者 康妙 计科峰 +2 位作者 冷祥光 邢相薇 邹焕新 《雷达学报(中英文)》 CSCD 2017年第2期167-176,共10页
该文提出了一种基于栈式自编码器(Stacked Auto Encoder,SAE)特征融合的合成孔径雷达(Synthetic Aperture Rader,SAR)图像车辆目标识别算法。首先,该算法提取了SAR图像的25种基线特征(baseline features)和局部纹理特征(Three-Patch Loc... 该文提出了一种基于栈式自编码器(Stacked Auto Encoder,SAE)特征融合的合成孔径雷达(Synthetic Aperture Rader,SAR)图像车辆目标识别算法。首先,该算法提取了SAR图像的25种基线特征(baseline features)和局部纹理特征(Three-Patch Local Binary Patterns,TPLBP)。然后将特征串联输入SAE网络中进行融合,采用逐层贪婪训练法对网络进行预训练。最后利用softmax分类器微调网络,提高网络融合性能。另外,该文提取了SAR图像的Gabor纹理特征,进行了不同特征之间的融合实验。结果表明基线特征与TPLBP特征冗余性小,互补性好,融合后的特征区分性大。与直接利用SAE,CNN(Convolutional Neural Network)进行目标识别的算法相比,基于SAE的特征融合算法简化了网络结构,提高了识别精度与识别效率。基于MSTAR数据集的10类目标分类精度达95.88%,验证了算法的有效性。 展开更多
关键词 SAR 目标识别 特征融合 栈式自编码器 MSTAR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部