This paper considers the problem of estimating unknown sparse time-varying signals for stochastic dynamic systems.To deal with the challenges of extensive sparsity,we resort to the compressed sensing method and propos...This paper considers the problem of estimating unknown sparse time-varying signals for stochastic dynamic systems.To deal with the challenges of extensive sparsity,we resort to the compressed sensing method and propose a compressed Kalman filter(KF)algorithm.Our algorithm first compresses the original high-dimensional sparse regression vector via the sensing matrix and then obtains a KF estimate in the compressed low-dimensional space.Subsequently,the original high-dimensional sparse signals can be well recovered by a reconstruction technique.To ensure stability and establish upper bounds on the estimation errors,we introduce a compressed excitation condition without imposing independence or stationarity on the system signal,and therefore suitable for feedback systems.We further present the performance of the compressed KF algorithm.Specifically,we show that the mean square compressed tracking error matrix can be approximately calculated by a linear deterministic difference matrix equation,which can be readily evaluated,analyzed,and optimized.Finally,a numerical example demonstrates that our algorithm outperforms the standard uncompressed KF algorithm and other compressed algorithms for estimating high-dimensional sparse signals.展开更多
In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-u...In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3305600)the National Natural Science Foundation of China(Grant Nos.61621003,62141604)+1 种基金the China Postdoctoral Science Foundation(Grant No.2022M722926)the Major Key Project of Peng Cheng Laboratory(Grant No.PCL2023AS1-2)。
文摘This paper considers the problem of estimating unknown sparse time-varying signals for stochastic dynamic systems.To deal with the challenges of extensive sparsity,we resort to the compressed sensing method and propose a compressed Kalman filter(KF)algorithm.Our algorithm first compresses the original high-dimensional sparse regression vector via the sensing matrix and then obtains a KF estimate in the compressed low-dimensional space.Subsequently,the original high-dimensional sparse signals can be well recovered by a reconstruction technique.To ensure stability and establish upper bounds on the estimation errors,we introduce a compressed excitation condition without imposing independence or stationarity on the system signal,and therefore suitable for feedback systems.We further present the performance of the compressed KF algorithm.Specifically,we show that the mean square compressed tracking error matrix can be approximately calculated by a linear deterministic difference matrix equation,which can be readily evaluated,analyzed,and optimized.Finally,a numerical example demonstrates that our algorithm outperforms the standard uncompressed KF algorithm and other compressed algorithms for estimating high-dimensional sparse signals.
文摘In this paper, a decentralized proportional-derivative (PD) controller design for non-uniform motion of a Hamiltonian hybrid system is considered. A Hamiltonian hybrid system with the capability of producing a non-uniform motion is developed. The structural properties of the system are investigated by means of the theory of Hamiltonian systems. A relationship between the parameters of the system and the parameters of the proposed decentralized PD controller is shown to ensure local stability and tracking performance. Simulation results are included to show the obtained non-uniform motion.