In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the ex...In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the explicit square-conservative scheme, a high-order compact explicit square-conservative scheme is proposed in this paper. This scheme not only keeps the square-conservative characteristics, but also is of high accuracy. The numerical example shows that this scheme has less computing errors and better computational stability, and it could be considered to be tested and used in many atmospheric and oceanic problems.展开更多
Quantitative studies of scientific problems require solving correspondent mathematical models. Although a great deal of mathematical models of evolutional problems are set up under continuous space-time meaning, they ...Quantitative studies of scientific problems require solving correspondent mathematical models. Although a great deal of mathematical models of evolutional problems are set up under continuous space-time meaning, they usually had to be solved numerically after space-time discretization because nonlinear mathematical models except some展开更多
Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmos...Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated.展开更多
A kind of explicit square-conserving scheme is proposed for the Landau-Lifshitz equation with Gilbert component. The basic idea was to semidiscrete the Landau-Lifshitz equation into the ordinary differential equation...A kind of explicit square-conserving scheme is proposed for the Landau-Lifshitz equation with Gilbert component. The basic idea was to semidiscrete the Landau-Lifshitz equation into the ordinary differential equations. Then the Lie group method and the Runge-Kutta (RK) method were applied to the ordinary differential equations. The square conserving property and the accuracy of the two methods were compared. Numerical experiment results show the Lie group method has the good accuracy and the square conserving property than the RK method.展开更多
文摘In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the explicit square-conservative scheme, a high-order compact explicit square-conservative scheme is proposed in this paper. This scheme not only keeps the square-conservative characteristics, but also is of high accuracy. The numerical example shows that this scheme has less computing errors and better computational stability, and it could be considered to be tested and used in many atmospheric and oceanic problems.
文摘Quantitative studies of scientific problems require solving correspondent mathematical models. Although a great deal of mathematical models of evolutional problems are set up under continuous space-time meaning, they usually had to be solved numerically after space-time discretization because nonlinear mathematical models except some
基金the Outstanding State Key Laboratory Project of National Science Foundation of China (Grant No. 40023001 )the Key Innovatio
文摘Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated.
文摘A kind of explicit square-conserving scheme is proposed for the Landau-Lifshitz equation with Gilbert component. The basic idea was to semidiscrete the Landau-Lifshitz equation into the ordinary differential equations. Then the Lie group method and the Runge-Kutta (RK) method were applied to the ordinary differential equations. The square conserving property and the accuracy of the two methods were compared. Numerical experiment results show the Lie group method has the good accuracy and the square conserving property than the RK method.