Polypropylene composite nonwovens containing rare-earth strontium aluminates Sr Al2O4:Eu2+,Dy3+ and functional additives were fabricated by the spun-bonded technique.The optical properties, morphology and mechanica...Polypropylene composite nonwovens containing rare-earth strontium aluminates Sr Al2O4:Eu2+,Dy3+ and functional additives were fabricated by the spun-bonded technique.The optical properties, morphology and mechanical properties of the samples were characterized.Results from scanning electron microscopy photographs(SEM) indicated that the surface of the fiber was destroyed by the addition of rare earth luminescent materials lightly but the thickness of the fiber was uniform.Differential scanning calorimetry results showed that pure polypropylene has the double crystallization peak at 162.3 and 165.1 °C.Studies from X-ray diffraction showed that the nonwoven prepared with the luminescent materials contained the α-monoclinic crystal and β crystalline phase.Furthermore, the afterglow properties were tested, which showed that the afterglow curve of the luminous nonwoven was similar to that of strontium aluminate, and the intensity was more intensive than luminous nonwoven at the beginning.The nonwoven fabricated with the luminescent material did not affect the crystal lattice of the polymer making the materials have potential applications in fluorescent lamps and field emission displays(FEDs).展开更多
The manufacturing process of CaCO3 modified Polypropylene (PP) spun-bonded nonwovens was studied. Then the effect of the additive amount of CaCO3 on mechanical properties of the product was analyzed, and a compatible ...The manufacturing process of CaCO3 modified Polypropylene (PP) spun-bonded nonwovens was studied. Then the effect of the additive amount of CaCO3 on mechanical properties of the product was analyzed, and a compatible mechanism between CaCO3 particles and the main component of PP was established. In the end, the mechanical performance of the products was studied when the natural light degradation was changed. The experiment results show that after adding CaCO3 to the PP spun-bonded nonwovens and through the application of complex coupling agent and organic modification, hardcore of rigid particles and polymer composite elastomers can be combined together tightly and disperse rapidly and evenly in the main part of PP. In addition, CaCO3 can catalyze the light degradation of PP spun-bonded nonwovens. The larger the content of CaCO3 is, the faster the light degradation will be.展开更多
基金Project supported by National High-Tech R&D Program of China(863 Program,2012AA030313)
文摘Polypropylene composite nonwovens containing rare-earth strontium aluminates Sr Al2O4:Eu2+,Dy3+ and functional additives were fabricated by the spun-bonded technique.The optical properties, morphology and mechanical properties of the samples were characterized.Results from scanning electron microscopy photographs(SEM) indicated that the surface of the fiber was destroyed by the addition of rare earth luminescent materials lightly but the thickness of the fiber was uniform.Differential scanning calorimetry results showed that pure polypropylene has the double crystallization peak at 162.3 and 165.1 °C.Studies from X-ray diffraction showed that the nonwoven prepared with the luminescent materials contained the α-monoclinic crystal and β crystalline phase.Furthermore, the afterglow properties were tested, which showed that the afterglow curve of the luminous nonwoven was similar to that of strontium aluminate, and the intensity was more intensive than luminous nonwoven at the beginning.The nonwoven fabricated with the luminescent material did not affect the crystal lattice of the polymer making the materials have potential applications in fluorescent lamps and field emission displays(FEDs).
文摘The manufacturing process of CaCO3 modified Polypropylene (PP) spun-bonded nonwovens was studied. Then the effect of the additive amount of CaCO3 on mechanical properties of the product was analyzed, and a compatible mechanism between CaCO3 particles and the main component of PP was established. In the end, the mechanical performance of the products was studied when the natural light degradation was changed. The experiment results show that after adding CaCO3 to the PP spun-bonded nonwovens and through the application of complex coupling agent and organic modification, hardcore of rigid particles and polymer composite elastomers can be combined together tightly and disperse rapidly and evenly in the main part of PP. In addition, CaCO3 can catalyze the light degradation of PP spun-bonded nonwovens. The larger the content of CaCO3 is, the faster the light degradation will be.