The prevention and treatment of epidemic is always an urgent problem faced by the human being. Due to the special space structure, huge passenger flow and great people mobility, the subway lines have become the areas ...The prevention and treatment of epidemic is always an urgent problem faced by the human being. Due to the special space structure, huge passenger flow and great people mobility, the subway lines have become the areas with high epidemic transmission risks. However, there is no recent study related to epidemic transmission in the subway network on urban-scale. In this article, from the perspective of big data, we study the transmission risk of epidemic in Beijing subway network by using urban subway mobility data. By reintegrating and mining the urban subway mobility data, we preliminary assess the transmission risk in the subway lines from the passenger behaviors, station features, route features and individual case on the basis of subway network structure. This study has certain practical significance for the early stage of epidemic tracking and prevention.展开更多
Uncertainty exists widely in hydrological analysis, and this makes the process of uncertainty assessment very im- portant for making robust decisions. In this study, uncertainty sources in regional rainfall frequency ...Uncertainty exists widely in hydrological analysis, and this makes the process of uncertainty assessment very im- portant for making robust decisions. In this study, uncertainty sources in regional rainfall frequency analysis are identified for the first time. The numeral unite spread assessment pedigree (NUSAP) method is introduced and is first employed to quantify qual- itative uncertainty in regional rainfall frequency analysis. A pedigree matrix is particularly designed for regional rainfall frequency analysis, by which the qualitative uncertainty can be quantified. Finally, the qualitative and quantitative uncertainties are com- bined in an uncertainty diagnostic diagram, which makes the uncertainty evaluation results more intuitive. From the integrated diagnostic diagram, it can be determined that the uncertainty caused by the precipitation data is the smallest, and the uncertainty from different grouping methods is the largest. For the downstream sub-region, a generalized extreme value (GEV) distribution is better than a generalized logistic (GLO) distribution; for the south sub-region, a Pearson type III (PE3) distribution is the better choice; and for the north sub-region, GEV is more appropriate.展开更多
The high resolution radar target detection is addressed in the non-Gaussian clutter. An adaptive detector is derived for range-spread target based on a novel covariance matrix estimator. It is proved that the new dete...The high resolution radar target detection is addressed in the non-Gaussian clutter. An adaptive detector is derived for range-spread target based on a novel covariance matrix estimator. It is proved that the new detector is constant false alarm rate (CFAR) to both of the clutter covariance matrix structure and power level theoretically for match cases. The simulation results show that the new detector is almost CFAR for mismatch cases, and it outperforms the existing adaptive detector based on the sample covariance matrix. It also shows that the detection performance improves, as the number of pulses, the number of secondary data or the clutter spike increases. In addition, the derived detector is robust to different subsets, estimated clutter group sizes and correlations of clutter. Importantly, the number of iterations for practical application is just one.展开更多
文摘The prevention and treatment of epidemic is always an urgent problem faced by the human being. Due to the special space structure, huge passenger flow and great people mobility, the subway lines have become the areas with high epidemic transmission risks. However, there is no recent study related to epidemic transmission in the subway network on urban-scale. In this article, from the perspective of big data, we study the transmission risk of epidemic in Beijing subway network by using urban subway mobility data. By reintegrating and mining the urban subway mobility data, we preliminary assess the transmission risk in the subway lines from the passenger behaviors, station features, route features and individual case on the basis of subway network structure. This study has certain practical significance for the early stage of epidemic tracking and prevention.
基金the National Natural Science Foundation of China,the Zhejiang Provincial Natural Science Foundation of China
文摘Uncertainty exists widely in hydrological analysis, and this makes the process of uncertainty assessment very im- portant for making robust decisions. In this study, uncertainty sources in regional rainfall frequency analysis are identified for the first time. The numeral unite spread assessment pedigree (NUSAP) method is introduced and is first employed to quantify qual- itative uncertainty in regional rainfall frequency analysis. A pedigree matrix is particularly designed for regional rainfall frequency analysis, by which the qualitative uncertainty can be quantified. Finally, the qualitative and quantitative uncertainties are com- bined in an uncertainty diagnostic diagram, which makes the uncertainty evaluation results more intuitive. From the integrated diagnostic diagram, it can be determined that the uncertainty caused by the precipitation data is the smallest, and the uncertainty from different grouping methods is the largest. For the downstream sub-region, a generalized extreme value (GEV) distribution is better than a generalized logistic (GLO) distribution; for the south sub-region, a Pearson type III (PE3) distribution is the better choice; and for the north sub-region, GEV is more appropriate.
基金supported by Program for New Century Excellent Talents in University (05-0912)the National Natural Science Foundation of China (60672140)the Scientific Research Foundation of Naval Aeronautical and Astronautical University for Young Scholars(HYQN201013)
文摘The high resolution radar target detection is addressed in the non-Gaussian clutter. An adaptive detector is derived for range-spread target based on a novel covariance matrix estimator. It is proved that the new detector is constant false alarm rate (CFAR) to both of the clutter covariance matrix structure and power level theoretically for match cases. The simulation results show that the new detector is almost CFAR for mismatch cases, and it outperforms the existing adaptive detector based on the sample covariance matrix. It also shows that the detection performance improves, as the number of pulses, the number of secondary data or the clutter spike increases. In addition, the derived detector is robust to different subsets, estimated clutter group sizes and correlations of clutter. Importantly, the number of iterations for practical application is just one.