Protonic ceramic fuel cells(PCFCs)are more suitable for operation at low temperatures due to their smaller activation energy(Ea).Unfortunately,the utilization of PCFC technology at reduced temperatures is limited by t...Protonic ceramic fuel cells(PCFCs)are more suitable for operation at low temperatures due to their smaller activation energy(Ea).Unfortunately,the utilization of PCFC technology at reduced temperatures is limited by the lack of durable and high-activity air electrodes.A lot number of cobalt-based oxides have been developed as air electrodes for PCFCs,due to their high oxygen reduction reaction(ORR)activity.However,cobalt-based oxides usually have more significant thermal expansion coefficients(TECs)and poor thermomechanical compatibility with electrolytes.These characteristics can lead to cell delamination and degradation.Herein,we rationally design a novel cobalt-containing composite cathode material with the nominal composition of Sr_(4)Fe_(4)Co_(2)O_(13)+δ(SFC).SFC is composed of tetragonal perovskite phase(Sr_(8)Fe_(8)O_(23)+δ,I4/mmm,81 wt.%)and spinel phase(Co_(3)O_(4),Fd3m,19 wt.%).The SFC composite cathode displays an ultra-high oxygen ionic conductivity(0.053 S·cm^(-1)at 550℃),superior CO_(2)tolerance,and suitable TEC value(17.01×10^(-6)K^(-1)).SFC has both the O_(2)^(-)/e^(-)conduction function,and the triple conducting(H^(+)/O_(2)^(-)/e^(-))capability was achieved by introducing the protonic conduction phase(BaZr_(0.2)Ce_(0.7)Y_(0.1)O_(3-δ),BZCY)to form SFC+BZCY(70 wt.%:30 wt.%).The SFC+BZCY composite electrode exhibits superior ORR activity at a reduced temperature with extremely low area-specific resistance(ASR,0.677Ω·cm^(2)at 550℃),profound peak power density(PPD,535 mW·cm^(-2)and 1.065 V at 550℃),extraordinarily long-term durability(>500 h for symmetrical cell and 350 h for single cell).Moreover,the composite has an ultra-low TEC value(15.96×10^(-6)K^(-1)).This study proves that SFC+BZCY with triple conducting capacity is an excellent cathode for low-temperature PCFCs.展开更多
AB_(2)O_(4)-type spinels with low relative permittivity(ε_(τ))and high quality factor(Q×f)are crucial to high-speed signal propagation systems.In this work,Zn^(2+)/Ge^(4+) co-doping to substitute Ga in ZnGa_(2)...AB_(2)O_(4)-type spinels with low relative permittivity(ε_(τ))and high quality factor(Q×f)are crucial to high-speed signal propagation systems.In this work,Zn^(2+)/Ge^(4+) co-doping to substitute Ga in ZnGa_(2)O_(4) was designed to lower the sintering temperature and adjust the thermal stability of resonance frequency simultaneously.Zn_(1+2)Ga_(2-2x)Ge_(x)O_(4)(0.1≤x≤0.5)ceramics were synthesised by the conventional solid state method.Zn^(2+)/Ge^(4+) co-substitution induced minimal variation in the macroscopical spinel structure,which effectively lowered the sintering temperature from 1385 to 1250℃.All compositions crystallized in a normal spinel structure and exhibited dense microstructures and excellent microwave dielectric properties.The compositional dependent quality factor was related to the microstructural variation,being confirmed by Raman features.A composition with x=0.3 shows the best dielectric properties with ε_(τ) ≈10.09,Q×f≈112,700 THz,and ε_(τ) ≈-75.6 ppm/℃.The negative τf value was further adjusted to be near-zero through the formation of composite ceramics with TiO_(2).展开更多
基金This research was financially supported by the National Natural Science Foundation of China(No.22179054)the National Natural Science Foundation of China(No.22101150)+1 种基金Natural Science Foundation of Jiangsu Province,China(No.BK20190965)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.18KJB470011).
文摘Protonic ceramic fuel cells(PCFCs)are more suitable for operation at low temperatures due to their smaller activation energy(Ea).Unfortunately,the utilization of PCFC technology at reduced temperatures is limited by the lack of durable and high-activity air electrodes.A lot number of cobalt-based oxides have been developed as air electrodes for PCFCs,due to their high oxygen reduction reaction(ORR)activity.However,cobalt-based oxides usually have more significant thermal expansion coefficients(TECs)and poor thermomechanical compatibility with electrolytes.These characteristics can lead to cell delamination and degradation.Herein,we rationally design a novel cobalt-containing composite cathode material with the nominal composition of Sr_(4)Fe_(4)Co_(2)O_(13)+δ(SFC).SFC is composed of tetragonal perovskite phase(Sr_(8)Fe_(8)O_(23)+δ,I4/mmm,81 wt.%)and spinel phase(Co_(3)O_(4),Fd3m,19 wt.%).The SFC composite cathode displays an ultra-high oxygen ionic conductivity(0.053 S·cm^(-1)at 550℃),superior CO_(2)tolerance,and suitable TEC value(17.01×10^(-6)K^(-1)).SFC has both the O_(2)^(-)/e^(-)conduction function,and the triple conducting(H^(+)/O_(2)^(-)/e^(-))capability was achieved by introducing the protonic conduction phase(BaZr_(0.2)Ce_(0.7)Y_(0.1)O_(3-δ),BZCY)to form SFC+BZCY(70 wt.%:30 wt.%).The SFC+BZCY composite electrode exhibits superior ORR activity at a reduced temperature with extremely low area-specific resistance(ASR,0.677Ω·cm^(2)at 550℃),profound peak power density(PPD,535 mW·cm^(-2)and 1.065 V at 550℃),extraordinarily long-term durability(>500 h for symmetrical cell and 350 h for single cell).Moreover,the composite has an ultra-low TEC value(15.96×10^(-6)K^(-1)).This study proves that SFC+BZCY with triple conducting capacity is an excellent cathode for low-temperature PCFCs.
基金support from the National Natural Science Foundation of China(No.62061011)the Guangxi Zhuang Autonomous Region(Nos.2018GXNSFAA281253 and 2019GXNSFGA245006)the High-Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes.
文摘AB_(2)O_(4)-type spinels with low relative permittivity(ε_(τ))and high quality factor(Q×f)are crucial to high-speed signal propagation systems.In this work,Zn^(2+)/Ge^(4+) co-doping to substitute Ga in ZnGa_(2)O_(4) was designed to lower the sintering temperature and adjust the thermal stability of resonance frequency simultaneously.Zn_(1+2)Ga_(2-2x)Ge_(x)O_(4)(0.1≤x≤0.5)ceramics were synthesised by the conventional solid state method.Zn^(2+)/Ge^(4+) co-substitution induced minimal variation in the macroscopical spinel structure,which effectively lowered the sintering temperature from 1385 to 1250℃.All compositions crystallized in a normal spinel structure and exhibited dense microstructures and excellent microwave dielectric properties.The compositional dependent quality factor was related to the microstructural variation,being confirmed by Raman features.A composition with x=0.3 shows the best dielectric properties with ε_(τ) ≈10.09,Q×f≈112,700 THz,and ε_(τ) ≈-75.6 ppm/℃.The negative τf value was further adjusted to be near-zero through the formation of composite ceramics with TiO_(2).