Let X= {x(t, ω), t≥0} be d(≥3)-dimensional Brownian motion on probability space (Ω, F, P) with values in Euclidean space R^d; B^d be the Borel σ-algebra in R^d. The transition probability density of X
提出一种采用石墨自润滑球铰连接的立方体构型Stewart隔振平台,6个支腿通过可转动的球铰与基础及载荷平台相连,每个支腿由音圈作动器与力传感器构成。在假设各支腿、基础及载荷平台均为弹性体的基础上,采用子结构频响函数综合法对Stewar...提出一种采用石墨自润滑球铰连接的立方体构型Stewart隔振平台,6个支腿通过可转动的球铰与基础及载荷平台相连,每个支腿由音圈作动器与力传感器构成。在假设各支腿、基础及载荷平台均为弹性体的基础上,采用子结构频响函数综合法对Stewart隔振平台进行动力学建模,并通过FEM方法进行验证,给出内嵌反馈控制的隔振平台模型,对反馈控制效果进行仿真验证;在仿真分析的基础上,对隔振平台的被动隔振性能和内嵌反馈控制的主动隔振性能进行实验。结果表明,被动隔振在30~200 Hz频段内具有约-36 d B/dec的衰减率,主动隔振在3~100 Hz频段内可获得最大20 d B的幅值衰减,<200 Hz,支腿力RMS值控制后下降75%~80%。展开更多
A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It h...A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled.展开更多
A flexible connector of lifting pipes in a deep sea mining system is designed. The buttress thread ( based on API standard) is used and foreign experience in connector design is referred to. With this kind of connec...A flexible connector of lifting pipes in a deep sea mining system is designed. The buttress thread ( based on API standard) is used and foreign experience in connector design is referred to. With this kind of connector, the lifting pipe wiU only bear the axial force, free of moment. The strength of the connector is analyzed in detail, including the connecting strength of the buttress thread, the dynamic load of the pipe system, pressures inside and outside of the pipe, the lateral stress of the pipe wall and so on. Especially, a geometric model is built for 3-D contact stress analysis. The distribution graph of contact stress is presented. It is indicated that the strength of the spherical connector meets the demand.展开更多
The collision and wear caused by inevitable clearance in kinematic pair have an effect on the dynamic characteristics of the mechanism.Therefore,we established the dynamic model of a 3RSR(R is the revolute joint and S...The collision and wear caused by inevitable clearance in kinematic pair have an effect on the dynamic characteristics of the mechanism.Therefore,we established the dynamic model of a 3RSR(R is the revolute joint and S is the spherical joint)parallel mechanism with spherical joint clearance based on the modified Flores contact force model and the modified Coulomb friction model using Newton-Euler method.The standard quaternion was introduced in the constraint equation,and the four-order Runge-Kutta method was adopted to solve the 3RSR dynamic model.The simulation results were compared and analyzed with the numerical results.The geometrical parameters of the worn ball socket were solved based on the Archard wear model,and the geometrical reconstruction of the worn surface was carried out.The geometric reconstruction parameters were substituted into the dynamic model,which was to analyze the dynamic response of the 3RSR parallel mechanism with wear and spherical joint clearance.The simulation results show that the irregular wear occurs in the spherical joint with clearance under the presence of the impact and friction force.The long-term wear will increase the fluctuation of the contact force,thereby decreasing the movement stability of the mechanism.展开更多
The analysis of degrees of freedom(DOF) of a moving platform is the fundamental problem in kinematics of parallel mechanism. However, many problems should be considered to correctly perform the DOF calculation by us...The analysis of degrees of freedom(DOF) of a moving platform is the fundamental problem in kinematics of parallel mechanism. However, many problems should be considered to correctly perform the DOF calculation by using the traditional DOF criterion, and it is difficult to find a DOF criterion suitable for all kinds of mechanisms. A rule that can be used to determine the position and orientation of the moving platform is presented. Based on the proposed rule, a new form of DOF criterion is proposed, which is suitable for a class of parallel mechanisms with three spherical joints attached to the moving platform. The basic types of generalized limb structures are given based on the possible dimension of achieving the center of spherical joint attached to the moving platform, and the general steps of analyzing the DOF are presented. This proposed formula simplifies the DOF analysis of parallel mechanisms with spherical joints attached to the moving platform, and plays an important role in structural synthesis of such parallel mechanisms.展开更多
Virtual simulation is an economical and efficient method in mechanical system design. Numerical modeling of a spar platform, tethered by a mooring cable with a spherical joint is developed for the dynamic simulation o...Virtual simulation is an economical and efficient method in mechanical system design. Numerical modeling of a spar platform, tethered by a mooring cable with a spherical joint is developed for the dynamic simulation of the floating structure in ocean. The geometry modeling of the spar is created using finite element methods. The submerged part of the spar bears the buoyancy, hydrodynamic drag force, and effect of the added mass and Froude-Krylov force. Strip theory is used to sum up the forces acting on the elements. The geometry modeling of the cable is established based on the lumped-mass-and-spring modeling through which the cable is divided into 10 elements. A new element-fixed local frame is used, which is created by the element orientation vector and relative velocity of the fluid, to express the loads acting on the cable. The bottom of the cable is fixed on the seabed by spring forces, while the top of the cable is connected to the bottom of the spar platform by a modified spherical joint. This system suffers the propagating wave and current in the X-direction and the linear wave theory is applied for setting of the propagating wave. Based on the numerical modeling, the displacement-load relationships are analyzed, and the simulation results of the numerical modeling are compared with those by the commercial simulation code, Proteus DS. The comparison indicates that the numerical modeling of the spar platform tethered by a mooring cable is well developed, which provides an instruction for the optimization of a floating structure tethered by a mooring cable system.展开更多
To overcome the current difficulties of high-precision machining and the high manufacturing and maintenance costs of spherical seals for deep-water drilling ball joints,a new spherical seal technique is proposed in th...To overcome the current difficulties of high-precision machining and the high manufacturing and maintenance costs of spherical seals for deep-water drilling ball joints,a new spherical seal technique is proposed in this paper.The spherical seal is mainly composed of silicone rubber and polytetrafluoroethylene(PTFE).Rational structural design makes the seal independent from the ball and other components,making it easy to replace if leakage occurs at its surface.PTFE can elastically deform over a certain deformation range,which guarantees that two sealing surfaces fit tightly together.O-Ring and PTFE elasticity makes up for any lack of accuracy during spherical machining and decreases the machining precision requirements for spherical surfaces.Using a finite element technique and nonlinear theory,the performance of the spherical seal under the influence of various factors is determined.The results show that the spherical seal designed in this paper exhibits excellent sealing performance under lowtemperature and high-pressure conditions.The spherical seal,a combination of an O-ring and PTFE,has the advantages of cheap manufacturing and maintenance costs and excellent sealing performance.展开更多
基金Project supported by the Chinese National Tian Yuan Science Foundation
文摘Let X= {x(t, ω), t≥0} be d(≥3)-dimensional Brownian motion on probability space (Ω, F, P) with values in Euclidean space R^d; B^d be the Borel σ-algebra in R^d. The transition probability density of X
文摘提出一种采用石墨自润滑球铰连接的立方体构型Stewart隔振平台,6个支腿通过可转动的球铰与基础及载荷平台相连,每个支腿由音圈作动器与力传感器构成。在假设各支腿、基础及载荷平台均为弹性体的基础上,采用子结构频响函数综合法对Stewart隔振平台进行动力学建模,并通过FEM方法进行验证,给出内嵌反馈控制的隔振平台模型,对反馈控制效果进行仿真验证;在仿真分析的基础上,对隔振平台的被动隔振性能和内嵌反馈控制的主动隔振性能进行实验。结果表明,被动隔振在30~200 Hz频段内具有约-36 d B/dec的衰减率,主动隔振在3~100 Hz频段内可获得最大20 d B的幅值衰减,<200 Hz,支腿力RMS值控制后下降75%~80%。
基金Project (50575206) supported by the National Natural Science Foundation of ChinaProject (BX102716) supported by Xinmiao Program of Zhejiang Province, China
文摘A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled.
基金This research was financially supported by China Ocean Mineral Resources R &D Association (Grant No. DY105-03-02-17) .
文摘A flexible connector of lifting pipes in a deep sea mining system is designed. The buttress thread ( based on API standard) is used and foreign experience in connector design is referred to. With this kind of connector, the lifting pipe wiU only bear the axial force, free of moment. The strength of the connector is analyzed in detail, including the connecting strength of the buttress thread, the dynamic load of the pipe system, pressures inside and outside of the pipe, the lateral stress of the pipe wall and so on. Especially, a geometric model is built for 3-D contact stress analysis. The distribution graph of contact stress is presented. It is indicated that the strength of the spherical connector meets the demand.
基金Project(2018YFB1307900)supported by the National Key R&D Program of ChinaProject(51775473)supported by the National Natural Science Foundation of China+3 种基金Projects(E2018203140,E2019203109)supported by the Natural Science Foundation of Hebei Province,ChinaProject(ZD2019020)supported by the Key Research Project in Higher Education Institutions of Hebei Province,ChinaProject(2017KSYS009)supported by the Key Laboratory of Robotics and Intelligent Equipment of Guangdong Regular Institutions of Higher Education,ChinaProject(KCYCXPT2017006)supported by the Innovation Center of Robotics and Intelligent Equipment of Dongguan University of Technology,China。
文摘The collision and wear caused by inevitable clearance in kinematic pair have an effect on the dynamic characteristics of the mechanism.Therefore,we established the dynamic model of a 3RSR(R is the revolute joint and S is the spherical joint)parallel mechanism with spherical joint clearance based on the modified Flores contact force model and the modified Coulomb friction model using Newton-Euler method.The standard quaternion was introduced in the constraint equation,and the four-order Runge-Kutta method was adopted to solve the 3RSR dynamic model.The simulation results were compared and analyzed with the numerical results.The geometrical parameters of the worn ball socket were solved based on the Archard wear model,and the geometrical reconstruction of the worn surface was carried out.The geometric reconstruction parameters were substituted into the dynamic model,which was to analyze the dynamic response of the 3RSR parallel mechanism with wear and spherical joint clearance.The simulation results show that the irregular wear occurs in the spherical joint with clearance under the presence of the impact and friction force.The long-term wear will increase the fluctuation of the contact force,thereby decreasing the movement stability of the mechanism.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175029,51475035)Beijing Municipal Natural Science Foundation of China(Grant No.3132019)+1 种基金Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0769)China Postdoctoral Science Foundation(Grant No.2014M550601)
文摘The analysis of degrees of freedom(DOF) of a moving platform is the fundamental problem in kinematics of parallel mechanism. However, many problems should be considered to correctly perform the DOF calculation by using the traditional DOF criterion, and it is difficult to find a DOF criterion suitable for all kinds of mechanisms. A rule that can be used to determine the position and orientation of the moving platform is presented. Based on the proposed rule, a new form of DOF criterion is proposed, which is suitable for a class of parallel mechanisms with three spherical joints attached to the moving platform. The basic types of generalized limb structures are given based on the possible dimension of achieving the center of spherical joint attached to the moving platform, and the general steps of analyzing the DOF are presented. This proposed formula simplifies the DOF analysis of parallel mechanisms with spherical joints attached to the moving platform, and plays an important role in structural synthesis of such parallel mechanisms.
基金Supported by Human Resources Development Program of Korea Institute of Energy Technology Evaluation and Planning(KETEP)Ministry of Trade,Industry and Energy of Korea(Grant No.20134030200290)
文摘Virtual simulation is an economical and efficient method in mechanical system design. Numerical modeling of a spar platform, tethered by a mooring cable with a spherical joint is developed for the dynamic simulation of the floating structure in ocean. The geometry modeling of the spar is created using finite element methods. The submerged part of the spar bears the buoyancy, hydrodynamic drag force, and effect of the added mass and Froude-Krylov force. Strip theory is used to sum up the forces acting on the elements. The geometry modeling of the cable is established based on the lumped-mass-and-spring modeling through which the cable is divided into 10 elements. A new element-fixed local frame is used, which is created by the element orientation vector and relative velocity of the fluid, to express the loads acting on the cable. The bottom of the cable is fixed on the seabed by spring forces, while the top of the cable is connected to the bottom of the spar platform by a modified spherical joint. This system suffers the propagating wave and current in the X-direction and the linear wave theory is applied for setting of the propagating wave. Based on the numerical modeling, the displacement-load relationships are analyzed, and the simulation results of the numerical modeling are compared with those by the commercial simulation code, Proteus DS. The comparison indicates that the numerical modeling of the spar platform tethered by a mooring cable is well developed, which provides an instruction for the optimization of a floating structure tethered by a mooring cable system.
文摘To overcome the current difficulties of high-precision machining and the high manufacturing and maintenance costs of spherical seals for deep-water drilling ball joints,a new spherical seal technique is proposed in this paper.The spherical seal is mainly composed of silicone rubber and polytetrafluoroethylene(PTFE).Rational structural design makes the seal independent from the ball and other components,making it easy to replace if leakage occurs at its surface.PTFE can elastically deform over a certain deformation range,which guarantees that two sealing surfaces fit tightly together.O-Ring and PTFE elasticity makes up for any lack of accuracy during spherical machining and decreases the machining precision requirements for spherical surfaces.Using a finite element technique and nonlinear theory,the performance of the spherical seal under the influence of various factors is determined.The results show that the spherical seal designed in this paper exhibits excellent sealing performance under lowtemperature and high-pressure conditions.The spherical seal,a combination of an O-ring and PTFE,has the advantages of cheap manufacturing and maintenance costs and excellent sealing performance.