This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a ...This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a Mississippian age of 345.2±3.6 Ma (MSWD=I.4), which is older than the published Late Triassic mineralization ages (230-200 Ma) of some other deposits. This indicates that at least two stages of lead-zinc mineralization have occurred in the SYG lead-zinc triangle. The first stage occurred in the Mississippian under an extensional environment, while the second stage occurred in the Late Triassic under a compressional environment. In situ sulfur isotope analysis of sphalerite growth zoning presents relatively large δ^34S values of 11.3‰-15.2‰ with small variations. The large δ^34S values indicate a reduced sulfur source of thermochemical reduction of seawater sulfates. Abundant organic matter in the black fracture zone possibly supplied reductants for thermochemical sulfate reduction (TSR) at the mineralization site. The small variation of δ^34S values suggests a slow and stable TSR process that could prevent the sudden supersaturation of sphalerite in the fluid and the resulting of fast participation. This is consistent with the well-crystallized characteristic of the sphalerite of the Daliangzi Deposit.展开更多
The Hongdonggou Pb-Zn polymetallic ore deposit, located in the southwestern part of the Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore mineralization in Henan Province, China, is an important part of the East Qinling metall...The Hongdonggou Pb-Zn polymetallic ore deposit, located in the southwestern part of the Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore mineralization in Henan Province, China, is an important part of the East Qinling metallogenic belt. The orebodies in the deposit, which are vein, bedded and lenticular, are mainly hosted in the syenite porphyry, and formed within the carbonate and clastic rocks of the Yuku and Qiumugou formations partially. The genesis of the deposit has previously been argued to be of hydrothermal-vein type or of skarn-hydrothermal type. In this study, we report the results of Rb-Sr isotopic dating based on sphalerites from the main orebody of the Hongdonggou Pb-Zn polymetallic ore deposit, which yield an isochron age of 135.7 ± 3.2 Ma, constraining the timing of mineralization as early Cretaceous. The age is close to those reported for the Pb-Zn deposits in the Luanchuan ore belt. The (87Sr/86Sr)i values of the sphalerites (0.71127± 0.00010) are lower than that of terrigenous silicates (0.720) and higher than the mantle (0.707), suggesting that the metallogenic components were mainly derived through crust-mantle mixing. Combining the results from this study with those from previous work, we propose that the Hongdonggou Pb-Zn polymetallic ore deposit is a hydrothermal-vein deposit associated with the early Cretaceous tectonothermal event, and the mineralization is controlled by NW- and near EW-trending faults in the Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore concentration belt.展开更多
基金financially supported by the China Geological Survey (No. 12120114019701)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)
文摘This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a Mississippian age of 345.2±3.6 Ma (MSWD=I.4), which is older than the published Late Triassic mineralization ages (230-200 Ma) of some other deposits. This indicates that at least two stages of lead-zinc mineralization have occurred in the SYG lead-zinc triangle. The first stage occurred in the Mississippian under an extensional environment, while the second stage occurred in the Late Triassic under a compressional environment. In situ sulfur isotope analysis of sphalerite growth zoning presents relatively large δ^34S values of 11.3‰-15.2‰ with small variations. The large δ^34S values indicate a reduced sulfur source of thermochemical reduction of seawater sulfates. Abundant organic matter in the black fracture zone possibly supplied reductants for thermochemical sulfate reduction (TSR) at the mineralization site. The small variation of δ^34S values suggests a slow and stable TSR process that could prevent the sudden supersaturation of sphalerite in the fluid and the resulting of fast participation. This is consistent with the well-crystallized characteristic of the sphalerite of the Daliangzi Deposit.
基金supported by the National Science and Technology Support Project of the 12th"Five-Year Plan"(Grant No.2011BAB04B06)the Fundamental Research Funds for the Central Universities of China University of Geosciences,Beijing(Grant No.2-9-2012-143)the National Natural Science Foundation of China(Grant No.41572318)
文摘The Hongdonggou Pb-Zn polymetallic ore deposit, located in the southwestern part of the Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore mineralization in Henan Province, China, is an important part of the East Qinling metallogenic belt. The orebodies in the deposit, which are vein, bedded and lenticular, are mainly hosted in the syenite porphyry, and formed within the carbonate and clastic rocks of the Yuku and Qiumugou formations partially. The genesis of the deposit has previously been argued to be of hydrothermal-vein type or of skarn-hydrothermal type. In this study, we report the results of Rb-Sr isotopic dating based on sphalerites from the main orebody of the Hongdonggou Pb-Zn polymetallic ore deposit, which yield an isochron age of 135.7 ± 3.2 Ma, constraining the timing of mineralization as early Cretaceous. The age is close to those reported for the Pb-Zn deposits in the Luanchuan ore belt. The (87Sr/86Sr)i values of the sphalerites (0.71127± 0.00010) are lower than that of terrigenous silicates (0.720) and higher than the mantle (0.707), suggesting that the metallogenic components were mainly derived through crust-mantle mixing. Combining the results from this study with those from previous work, we propose that the Hongdonggou Pb-Zn polymetallic ore deposit is a hydrothermal-vein deposit associated with the early Cretaceous tectonothermal event, and the mineralization is controlled by NW- and near EW-trending faults in the Luanchuan Mo-W-Pb-Zn-Ag polymetallic ore concentration belt.