Big wind farms must be integrated to power system.Wind power from big wind farms,with randomness,volatility and intermittent,will bring adverse impacts on the connected power system.High precision wind power forecasti...Big wind farms must be integrated to power system.Wind power from big wind farms,with randomness,volatility and intermittent,will bring adverse impacts on the connected power system.High precision wind power forecasting is helpful to reduce above adverse impacts.There are two kinds of wind power forecasting.One is to forecast wind power only based on its time series data.The other is to forecast wind power based on wind speeds from weather forecast.For a big wind farm,due to its spatial scale and dynamics of wind,wind speeds at different wind turbines are obviously different,that is called wind speed spatial dispersion.Spatial dispersion of wind speeds and its influence on the wind power forecasting errors have been studied in this paper.An error evaluation framework has been established to account for the errors caused by wind speed spatial dispersion.A case study of several wind farms has demonstrated that even ifthe forecasting average wind speed is accurate,the error caused by wind speed spatial dispersion cannot be ignored for the wind power forecasting of a wind farm.展开更多
To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s...To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.展开更多
Speed forecasting has numerous applications in intelligent transport systems’design and control,especially for safety and road efficiency applications.In the field of electromobility,it represents the most dynamic pa...Speed forecasting has numerous applications in intelligent transport systems’design and control,especially for safety and road efficiency applications.In the field of electromobility,it represents the most dynamic parameter for efficient online in-vehicle energy management.However,vehicles’speed forecasting is a challenging task,because its estimation is closely related to various features,which can be classified into two categories,endogenous and exogenous features.Endogenous features represent electric vehicles’characteristics,whereas exogenous ones represent its surrounding context,such as traffic,weather,and road conditions.In this paper,a speed forecasting method based on the Long Short-Term Memory(LSTM)is introduced.The LSTM model training is performed upon a dataset collected from a traffic simulator based on real-world data representing urban itineraries.The proposed models are generated for univariate and multivariate scenarios and are assessed in terms of accuracy for speed forecasting.Simulation results show that the multivariate model outperforms the univariate model for short-and long-term forecasting.展开更多
Weather forecasting is crucial to both the demand and supply sides of electricity systems. Temperature has a great effect on the demand side. Moreover, solar and wind are very promising renewable energy sources and ar...Weather forecasting is crucial to both the demand and supply sides of electricity systems. Temperature has a great effect on the demand side. Moreover, solar and wind are very promising renewable energy sources and are, thus, important on the supply side. In this paper, a large vector autoregression(VAR) model is built to forecast three important weather variables for 61 cities around the United States. The three variables at all locations are modeled as response variables. Lag terms are used to capture the relationship between observations in adjacent periods and daily and annual seasonality are modeled to consider the correlation between the same periods in adjacent days and years. We estimate the VAR model with16 years of hourly historical data and use two additional years of data for out-of-sample validation. Forecasts of up to six-hours-ahead are generated with good forecasting performance based on mean absolute error, root mean square error, relative root mean square error, and skill scores. Our VAR model gives forecasts with skill scoresthat are more than double the skill scores of other forecasting models in the literature. Our model also provides forecasts that outperform persistence forecasts by between6% and 80% in terms of mean absolute error. Our results show that the proposed time series approach is appropriate for very short-term forecasting of hourly solar radiation,temperature, and wind speed.展开更多
基金博士点基金项目(20110141110032)教育部中央高校基本科研业务费专项资金资助(20112072020008)+1 种基金supported by Specialized Research Fund for Doctoral Program of Higher Education(No.20110141110032)supported by the Fundamental Research Funds for the Central University(No.20112072020008)
基金funded by National Basic Research Program of China(973 Program)(No.2013CB228201)National Natural Science Foundation of China(No.51307017)
文摘Big wind farms must be integrated to power system.Wind power from big wind farms,with randomness,volatility and intermittent,will bring adverse impacts on the connected power system.High precision wind power forecasting is helpful to reduce above adverse impacts.There are two kinds of wind power forecasting.One is to forecast wind power only based on its time series data.The other is to forecast wind power based on wind speeds from weather forecast.For a big wind farm,due to its spatial scale and dynamics of wind,wind speeds at different wind turbines are obviously different,that is called wind speed spatial dispersion.Spatial dispersion of wind speeds and its influence on the wind power forecasting errors have been studied in this paper.An error evaluation framework has been established to account for the errors caused by wind speed spatial dispersion.A case study of several wind farms has demonstrated that even ifthe forecasting average wind speed is accurate,the error caused by wind speed spatial dispersion cannot be ignored for the wind power forecasting of a wind farm.
基金Project(2006BAC07B03) supported by the National Key Technology R & D Program of ChinaProject(2006G040-A) supported by the Foundation of the Science and Technology Section of Ministry of RailwayProject(2008yb044) supported by the Foundation of Excellent Doctoral Dissertation of Central South University
文摘To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.
基金supported by MIGRID project(No.5-398,2017–2019),which was funded by USAID under the PEER program
文摘Speed forecasting has numerous applications in intelligent transport systems’design and control,especially for safety and road efficiency applications.In the field of electromobility,it represents the most dynamic parameter for efficient online in-vehicle energy management.However,vehicles’speed forecasting is a challenging task,because its estimation is closely related to various features,which can be classified into two categories,endogenous and exogenous features.Endogenous features represent electric vehicles’characteristics,whereas exogenous ones represent its surrounding context,such as traffic,weather,and road conditions.In this paper,a speed forecasting method based on the Long Short-Term Memory(LSTM)is introduced.The LSTM model training is performed upon a dataset collected from a traffic simulator based on real-world data representing urban itineraries.The proposed models are generated for univariate and multivariate scenarios and are assessed in terms of accuracy for speed forecasting.Simulation results show that the multivariate model outperforms the univariate model for short-and long-term forecasting.
基金supported by the National Science Foundation (No: 1029337)supported by an allocation of computing time from the Ohio Supercomputer Center
文摘Weather forecasting is crucial to both the demand and supply sides of electricity systems. Temperature has a great effect on the demand side. Moreover, solar and wind are very promising renewable energy sources and are, thus, important on the supply side. In this paper, a large vector autoregression(VAR) model is built to forecast three important weather variables for 61 cities around the United States. The three variables at all locations are modeled as response variables. Lag terms are used to capture the relationship between observations in adjacent periods and daily and annual seasonality are modeled to consider the correlation between the same periods in adjacent days and years. We estimate the VAR model with16 years of hourly historical data and use two additional years of data for out-of-sample validation. Forecasts of up to six-hours-ahead are generated with good forecasting performance based on mean absolute error, root mean square error, relative root mean square error, and skill scores. Our VAR model gives forecasts with skill scoresthat are more than double the skill scores of other forecasting models in the literature. Our model also provides forecasts that outperform persistence forecasts by between6% and 80% in terms of mean absolute error. Our results show that the proposed time series approach is appropriate for very short-term forecasting of hourly solar radiation,temperature, and wind speed.