High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation appr...High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.展开更多
Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) tec...Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) technology. This paper presents a framework to evaluate blocking performance of time-slot-ted OBS networks with multi-fiber wavelength channels. The proposed model is efficient for not only single class traffic such as individual circuit switch traffics or best-effort traffics but also mixed multi-class traffics. The effectiveness of the proposed model is validated by simulation results. The study shows that blocking per-formance of multi-fiber TS-OBS network is acceptable for future Internet services.展开更多
In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling a...In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling algorithm is proposed. First, the time marks of every rising edge of the rotating speed pulse and the corresponding amplitudes of faulty bearing vibration signal are determined. Then, every adjacent the rotating pulse is divided equally, and the time marks in every adjacent rotating speed pulses and the corresponding amplitudes of vibration signal are obtained by the interpolation algorithm. Finally, all the time marks and the corresponding amplitudes of vibration signal are arranged and the time marks are transformed into the angle domain to obtain the resampling signal. Speed-up and speed-down faulty bearing signals are employed to verify the validity of the proposed method, and experimental results show that the proposed method is effective for diagnosing faulty bearings. Furthermore, the traditional order tracking techniques are applied to the experimental bearing signals, and the results show that the proposed method produces higher accurate outcomes in less computation time.展开更多
The dynamic resource allocation problem in high-speed railway downlink orthogonal frequency-division multiplexing(OFDM) systems with multiple-input multiple-output(MIMO) antennas is investigated.Sub-carriers,anten...The dynamic resource allocation problem in high-speed railway downlink orthogonal frequency-division multiplexing(OFDM) systems with multiple-input multiple-output(MIMO) antennas is investigated.Sub-carriers,antennas,time slots,and power are jointly considered.The problem of multi-dimensional resource allocation is formulated as a mixed-integer nonlinear programming problem.The effect of the moving speed on Doppler shift is analyzed to calculate the inter-carrier interference power.The optimization objective is to maximize the system throughput under the constraint of a total transmitted power that is no greater than a certain threshold.In order to reduce the computational complexity,a suboptimal solution to the optimization problem is obtained by a two-step method.First,sub-carriers,antennas,and time slots are assigned to users under the assumption of equal power allocation.Next,the power allocation problem is solved according to the result of the first-step resource allocation.Simulation results show that the proposed multi-dimensional resource allocation strategy has a significant performance improvement in terms of system throughput compared with the existing one.展开更多
基金Supported by the National Natural Science Foundation of China(No.61302080)Scientific Research Starting Foundation of Fuzhou University(No.022572)Science and Technology Development Foundation of Fuzhou University(No.2013-XY-27)
文摘High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.
基金Founded by the National Natural Science Foundation of China (No.60502005).
文摘Time-slotted optical burst switched network is a potential technique to support IP over Wavelength Division Multiplexing (WDM) by introduce Time Division Multiplexing (TDM) channel to Optical Burst Switching (OBS) technology. This paper presents a framework to evaluate blocking performance of time-slot-ted OBS networks with multi-fiber wavelength channels. The proposed model is efficient for not only single class traffic such as individual circuit switch traffics or best-effort traffics but also mixed multi-class traffics. The effectiveness of the proposed model is validated by simulation results. The study shows that blocking per-formance of multi-fiber TS-OBS network is acceptable for future Internet services.
基金Fundamental Research Funds for the Central Universities(No.2016JBM051)
文摘In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling algorithm is proposed. First, the time marks of every rising edge of the rotating speed pulse and the corresponding amplitudes of faulty bearing vibration signal are determined. Then, every adjacent the rotating pulse is divided equally, and the time marks in every adjacent rotating speed pulses and the corresponding amplitudes of vibration signal are obtained by the interpolation algorithm. Finally, all the time marks and the corresponding amplitudes of vibration signal are arranged and the time marks are transformed into the angle domain to obtain the resampling signal. Speed-up and speed-down faulty bearing signals are employed to verify the validity of the proposed method, and experimental results show that the proposed method is effective for diagnosing faulty bearings. Furthermore, the traditional order tracking techniques are applied to the experimental bearing signals, and the results show that the proposed method produces higher accurate outcomes in less computation time.
基金The National Science and Technology Major Project (No.2011ZX03001-007-03)the National Natural Science Foundation of China(No.61271182)
文摘The dynamic resource allocation problem in high-speed railway downlink orthogonal frequency-division multiplexing(OFDM) systems with multiple-input multiple-output(MIMO) antennas is investigated.Sub-carriers,antennas,time slots,and power are jointly considered.The problem of multi-dimensional resource allocation is formulated as a mixed-integer nonlinear programming problem.The effect of the moving speed on Doppler shift is analyzed to calculate the inter-carrier interference power.The optimization objective is to maximize the system throughput under the constraint of a total transmitted power that is no greater than a certain threshold.In order to reduce the computational complexity,a suboptimal solution to the optimization problem is obtained by a two-step method.First,sub-carriers,antennas,and time slots are assigned to users under the assumption of equal power allocation.Next,the power allocation problem is solved according to the result of the first-step resource allocation.Simulation results show that the proposed multi-dimensional resource allocation strategy has a significant performance improvement in terms of system throughput compared with the existing one.