采用水稻无土栽培方法人为控制含氮率,在水稻某特定生长期,同时测量水稻冠层反射率和叶片含氮率,建立了基于冠层反射率的水稻叶片氮含率的回归预测模型.通过分析不同氮环境下各冠层反射率光谱图,确定了与水稻含氮率相关性高的特征波段....采用水稻无土栽培方法人为控制含氮率,在水稻某特定生长期,同时测量水稻冠层反射率和叶片含氮率,建立了基于冠层反射率的水稻叶片氮含率的回归预测模型.通过分析不同氮环境下各冠层反射率光谱图,确定了与水稻含氮率相关性高的特征波段.针对最小二乘支持向量机(leastsquares support vector machines,LS-SVM)参数难定问题,采用遗传算法对LS-SVM参数进行优化.试验结果表明,传统人为选定参数的LS-SVM算法模型的平均回判精确率达到97.21%,预测平均误差率达到5.70%,遗传算法最小二乘支持向量机(genetic algorithm least squares support vec-tor machines,GA-LS-SVM)算法模型的平均回判精确率达到99.60%,预测平均误差率达到2.72%.GA-LS-SVM算法模型的回判及预测效果均明显优于人为选定参数的LS-SVM算法.展开更多
文摘采用水稻无土栽培方法人为控制含氮率,在水稻某特定生长期,同时测量水稻冠层反射率和叶片含氮率,建立了基于冠层反射率的水稻叶片氮含率的回归预测模型.通过分析不同氮环境下各冠层反射率光谱图,确定了与水稻含氮率相关性高的特征波段.针对最小二乘支持向量机(leastsquares support vector machines,LS-SVM)参数难定问题,采用遗传算法对LS-SVM参数进行优化.试验结果表明,传统人为选定参数的LS-SVM算法模型的平均回判精确率达到97.21%,预测平均误差率达到5.70%,遗传算法最小二乘支持向量机(genetic algorithm least squares support vec-tor machines,GA-LS-SVM)算法模型的平均回判精确率达到99.60%,预测平均误差率达到2.72%.GA-LS-SVM算法模型的回判及预测效果均明显优于人为选定参数的LS-SVM算法.