期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于FSK-CNN的轴承故障诊断研究
被引量:
1
1
作者
贾晗
尚前明
高海波
《应用科技》
CAS
2023年第2期128-133,共6页
在旋转机械设备的运维保障过程中,采用基于专家经验的传统故障检测方法难以对轴承的健康状态做出实时的状态检测。针对这一问题,本文提出一种基于快速谱峭度与卷积神经网络(FSK-CNN)的故障诊断方法。首先采用快速谱峭度(FSK)法对振动信...
在旋转机械设备的运维保障过程中,采用基于专家经验的传统故障检测方法难以对轴承的健康状态做出实时的状态检测。针对这一问题,本文提出一种基于快速谱峭度与卷积神经网络(FSK-CNN)的故障诊断方法。首先采用快速谱峭度(FSK)法对振动信号进行特征提取,将一维时域信号转化为二维的谱峭度图;之后,采用一种结合卷积注意力模块(CBAM)的卷积神经网络模型完成故障分类。试验结果表明,快速谱峭度法可以有效提取轴承振动信号故障特征,引入卷积注意力模块对传统卷积神经网络模型具有明显的优化作用,FSK-CNN的故障诊断方法对于10种不同的轴承故障类型的诊断准确率可以达到99%。
展开更多
关键词
故障诊断
快速谱峭度法
神经网络
卷积注意力模块
旋转机械设备
谱峭度图
振动信号
运维保障
下载PDF
职称材料
题名
基于FSK-CNN的轴承故障诊断研究
被引量:
1
1
作者
贾晗
尚前明
高海波
机构
武汉理工大学船海与能源动力工程学院
出处
《应用科技》
CAS
2023年第2期128-133,共6页
基金
国家自然科学基金项目(51909200)
国家重点研发计划项目(2019YFE0104600).
文摘
在旋转机械设备的运维保障过程中,采用基于专家经验的传统故障检测方法难以对轴承的健康状态做出实时的状态检测。针对这一问题,本文提出一种基于快速谱峭度与卷积神经网络(FSK-CNN)的故障诊断方法。首先采用快速谱峭度(FSK)法对振动信号进行特征提取,将一维时域信号转化为二维的谱峭度图;之后,采用一种结合卷积注意力模块(CBAM)的卷积神经网络模型完成故障分类。试验结果表明,快速谱峭度法可以有效提取轴承振动信号故障特征,引入卷积注意力模块对传统卷积神经网络模型具有明显的优化作用,FSK-CNN的故障诊断方法对于10种不同的轴承故障类型的诊断准确率可以达到99%。
关键词
故障诊断
快速谱峭度法
神经网络
卷积注意力模块
旋转机械设备
谱峭度图
振动信号
运维保障
Keywords
fault
diagnosis
fast
spectral
kurtosis
neural
network
convolutional
block
attention
module
rotating
machinery
spectral
kurtosis
figure
vibration
signal
operational
security
分类号
TH133.3 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于FSK-CNN的轴承故障诊断研究
贾晗
尚前明
高海波
《应用科技》
CAS
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部