叶面积指数(leaf area index,LAI)是评价作物长势和预测产量的重要依据。光谱特征信息作为高光谱遥感的突出优势在追踪LAI动态变化方面极其重要;然而,围绕光谱特征信息所开展的无人机高光谱遥感反演作物LAI的相关研究鲜有报道。该文利...叶面积指数(leaf area index,LAI)是评价作物长势和预测产量的重要依据。光谱特征信息作为高光谱遥感的突出优势在追踪LAI动态变化方面极其重要;然而,围绕光谱特征信息所开展的无人机高光谱遥感反演作物LAI的相关研究鲜有报道。该文利用ASD Field Spec FR Pro 2500光谱辐射仪(ASD Field Spec FR Pro 2500 spectroradiometer,ASD)和Cubert UHD185 Firefly成像光谱仪(Cuber UHD185 Firefly imaging spectrometer,UHD185)在冬小麦试验田进行空地联合试验,基于获取的孕穗期、开花期以及灌浆期地面数据和无人机高光谱遥感数据,估测冬小麦LAI。该文选择同步获取的冬小麦冠层ASD光谱反射率数据作为评价无人机UHD185高光谱数据质量的标准,依次从光谱曲线变化趋势、光谱相关性以及目标地物光谱差异三方面展开分析,结果表明458~830 nm(第3~96波段)的UHD185光谱数据可靠,可使用其探测冬小麦LAI,这为今后无人机UHD185高光谱数据的使用提供了参考。该文研究对比分析了UHD185数据计算的红边参数和光谱指数与冬小麦LAI的相关性,结果表明:12种参数中比值型光谱指数RSI(494,610)与LAI高度正相关,是估测LAI的最佳参数;基于比值型光谱指数的对数形式lg(RSI)构建的线性模型展现出lg(RSI)与lg(LAI)较优的线性关系(决定系数R2=0.737,参与建模的样本个数n=103),且lg(LAI)预测值和lg(LAI)实测值高度拟合性(R2=0.783,均方根误差RMSE=0.127,n=41,P〈0.001);该研究为利用无人机高光谱遥感数据开展相关研究积累了经验,也为发展无人机高光谱遥感的精准农业应用提供了参考。展开更多
农业遥感中,利用光谱指数方法反演作物叶绿素含量一直得到广泛地应用。利用PSR-3500光谱仪及SPAD-502叶绿素仪同步获取了冬小麦冠层光谱数据及对应叶片的叶绿素相对含量(SPAD值),并利用高斯光谱响应模型将PSR获取的地面连续光谱数据重...农业遥感中,利用光谱指数方法反演作物叶绿素含量一直得到广泛地应用。利用PSR-3500光谱仪及SPAD-502叶绿素仪同步获取了冬小麦冠层光谱数据及对应叶片的叶绿素相对含量(SPAD值),并利用高斯光谱响应模型将PSR获取的地面连续光谱数据重采样为多光谱Landsat-TM7及高光谱Hyperion光谱数据,然后分别计算基于两种传感器的归一化差值植被指数(normalized difference vegetation index,NDVI)、综合叶绿素光谱指数(MCARI/OSAVI,the ratio of the modified transformed chlorophyll absorption ratio index(MCARI)to optimized soil adjusted vegetation index(OSAVI))、三角形植被指数(triangle vegetation index,TVI)及通用植被指数(vegetation index based on universal pattern decomposition method,VIUPD),再将四种光谱指数与叶绿素含量进行回归分析。结果表明,针对重采样后的TM和Hyperion两种传感器数据,VIUPD反演叶绿素含量精度(决定系数R2)最高,反演能力最稳定,这与其"不受传感器影响"的特性密不可分;MCARI/OSAVI反演精度和稳定性次之,是因为引入的OSAVI削弱了土壤背景的影响;宽波段指数NDVI和TVI对模拟TM数据有较好的反演精度,对Hyperion数据反演精度却很低,可能是因为两种指数的构成形式简单,考虑的影响因素较少。以冬小麦为例,对利用光谱指数反演植被叶绿素含量的精度和稳定性进行了研究并分析了其影响因素,经比较发现利用植被指数VIUPD进行植被叶绿素含量反演时,其精度和稳定性最好。展开更多
土壤盐渍化是干旱半干旱地区土地退化的主要原因之一,给当地生态系统和社会经济的可持续发展带来了严重的威胁,而对盐渍化空间分布信息的提取是治理盐渍化的基础。因此,选取生态脆弱区渭—库绿洲为研究区,利用2014年7月19日GF-1多光谱...土壤盐渍化是干旱半干旱地区土地退化的主要原因之一,给当地生态系统和社会经济的可持续发展带来了严重的威胁,而对盐渍化空间分布信息的提取是治理盐渍化的基础。因此,选取生态脆弱区渭—库绿洲为研究区,利用2014年7月19日GF-1多光谱影像数据,提取光谱指数及波段信息,结合实际采样点的土壤表层电导率数据(0~10 cm),采用偏最小二乘回归模型(partial least squares regression,PLSR)对土壤盐渍化进行模拟,并对研究区盐渍化分布进行模拟和评估。结果表明:实测土壤表层电导率与光谱指数相关性较好;利用PLSR对渭—库绿洲土壤表层盐渍信息建模,对土壤盐渍化信息提取效果较好,精度较高;充分利用了GF-1影像包含的信息,提高了高分辨率遥感影像盐渍化信息提取的精度;非盐渍化和轻度盐渍化面积分别占总面积的42.88%和17.16%,绿洲中部偏东及东南区域,盐渍化现象稍弱,可成为今后绿洲扩张的重点方向;而中度盐渍化、重度盐渍化和盐土面积分别占总面积的29.51%、8.57%和1.88%,绿洲北部/西部及西南方向的重度盐渍化区域紧挨绿洲区域,已严重威胁了绿洲经济的健康发展,亟待治理。展开更多
目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80μg·cm^(-2))下的5nm叶...目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80μg·cm^(-2))下的5nm叶片光谱反射率数据,并利用高斯光谱响应函数将其分别模拟成10~35nm六种波段宽的光谱数据,再分析评价5~35nm波段宽下光谱指数与叶片叶绿素含量的相关性、对叶片叶绿素含量变化及对波段宽变化的敏感性。最后,利用波段宽为40~65nm的反射率数据对光谱指数反演植被叶绿素含量的光谱尺度效应进行验证。结果表明,通用光谱指数(vegetation index based on universal pattern decomposition method,VIUPD)反演叶绿素含量的精度最高,反演值与真实值拟合程度最好;归一化差值植被指数(normalized difference vegetation index,NDVI)和简单比值指数(simple ratio index,SRI)其次,虽然其决定系数R^2高达0.89以上,但反演的叶绿素含量值小于真实值;其他光谱指数的反演结果较差。VIUPD对叶绿素含量具有较好的相关性和敏感性,受光谱尺度效应影响较小,具有较好的反演能力,这一结论恰好验证了其"独立于传感器"的特性,同时证明了VIUPD在多源遥感数据反演植被理化参量的研究中具有更好的应用前景。展开更多
文摘叶面积指数(leaf area index,LAI)是评价作物长势和预测产量的重要依据。光谱特征信息作为高光谱遥感的突出优势在追踪LAI动态变化方面极其重要;然而,围绕光谱特征信息所开展的无人机高光谱遥感反演作物LAI的相关研究鲜有报道。该文利用ASD Field Spec FR Pro 2500光谱辐射仪(ASD Field Spec FR Pro 2500 spectroradiometer,ASD)和Cubert UHD185 Firefly成像光谱仪(Cuber UHD185 Firefly imaging spectrometer,UHD185)在冬小麦试验田进行空地联合试验,基于获取的孕穗期、开花期以及灌浆期地面数据和无人机高光谱遥感数据,估测冬小麦LAI。该文选择同步获取的冬小麦冠层ASD光谱反射率数据作为评价无人机UHD185高光谱数据质量的标准,依次从光谱曲线变化趋势、光谱相关性以及目标地物光谱差异三方面展开分析,结果表明458~830 nm(第3~96波段)的UHD185光谱数据可靠,可使用其探测冬小麦LAI,这为今后无人机UHD185高光谱数据的使用提供了参考。该文研究对比分析了UHD185数据计算的红边参数和光谱指数与冬小麦LAI的相关性,结果表明:12种参数中比值型光谱指数RSI(494,610)与LAI高度正相关,是估测LAI的最佳参数;基于比值型光谱指数的对数形式lg(RSI)构建的线性模型展现出lg(RSI)与lg(LAI)较优的线性关系(决定系数R2=0.737,参与建模的样本个数n=103),且lg(LAI)预测值和lg(LAI)实测值高度拟合性(R2=0.783,均方根误差RMSE=0.127,n=41,P〈0.001);该研究为利用无人机高光谱遥感数据开展相关研究积累了经验,也为发展无人机高光谱遥感的精准农业应用提供了参考。
文摘农业遥感中,利用光谱指数方法反演作物叶绿素含量一直得到广泛地应用。利用PSR-3500光谱仪及SPAD-502叶绿素仪同步获取了冬小麦冠层光谱数据及对应叶片的叶绿素相对含量(SPAD值),并利用高斯光谱响应模型将PSR获取的地面连续光谱数据重采样为多光谱Landsat-TM7及高光谱Hyperion光谱数据,然后分别计算基于两种传感器的归一化差值植被指数(normalized difference vegetation index,NDVI)、综合叶绿素光谱指数(MCARI/OSAVI,the ratio of the modified transformed chlorophyll absorption ratio index(MCARI)to optimized soil adjusted vegetation index(OSAVI))、三角形植被指数(triangle vegetation index,TVI)及通用植被指数(vegetation index based on universal pattern decomposition method,VIUPD),再将四种光谱指数与叶绿素含量进行回归分析。结果表明,针对重采样后的TM和Hyperion两种传感器数据,VIUPD反演叶绿素含量精度(决定系数R2)最高,反演能力最稳定,这与其"不受传感器影响"的特性密不可分;MCARI/OSAVI反演精度和稳定性次之,是因为引入的OSAVI削弱了土壤背景的影响;宽波段指数NDVI和TVI对模拟TM数据有较好的反演精度,对Hyperion数据反演精度却很低,可能是因为两种指数的构成形式简单,考虑的影响因素较少。以冬小麦为例,对利用光谱指数反演植被叶绿素含量的精度和稳定性进行了研究并分析了其影响因素,经比较发现利用植被指数VIUPD进行植被叶绿素含量反演时,其精度和稳定性最好。
文摘土壤盐渍化是干旱半干旱地区土地退化的主要原因之一,给当地生态系统和社会经济的可持续发展带来了严重的威胁,而对盐渍化空间分布信息的提取是治理盐渍化的基础。因此,选取生态脆弱区渭—库绿洲为研究区,利用2014年7月19日GF-1多光谱影像数据,提取光谱指数及波段信息,结合实际采样点的土壤表层电导率数据(0~10 cm),采用偏最小二乘回归模型(partial least squares regression,PLSR)对土壤盐渍化进行模拟,并对研究区盐渍化分布进行模拟和评估。结果表明:实测土壤表层电导率与光谱指数相关性较好;利用PLSR对渭—库绿洲土壤表层盐渍信息建模,对土壤盐渍化信息提取效果较好,精度较高;充分利用了GF-1影像包含的信息,提高了高分辨率遥感影像盐渍化信息提取的精度;非盐渍化和轻度盐渍化面积分别占总面积的42.88%和17.16%,绿洲中部偏东及东南区域,盐渍化现象稍弱,可成为今后绿洲扩张的重点方向;而中度盐渍化、重度盐渍化和盐土面积分别占总面积的29.51%、8.57%和1.88%,绿洲北部/西部及西南方向的重度盐渍化区域紧挨绿洲区域,已严重威胁了绿洲经济的健康发展,亟待治理。
文摘目前光谱指数方法已被广泛地应用于植被叶绿素含量的反演中,考虑到不同传感器的光谱响应存在差异,研究了光谱尺度效应对光谱指数反演植被叶片叶绿素含量的影响。基于PROSPECT模型模拟了不同叶绿素含量(5~80μg·cm^(-2))下的5nm叶片光谱反射率数据,并利用高斯光谱响应函数将其分别模拟成10~35nm六种波段宽的光谱数据,再分析评价5~35nm波段宽下光谱指数与叶片叶绿素含量的相关性、对叶片叶绿素含量变化及对波段宽变化的敏感性。最后,利用波段宽为40~65nm的反射率数据对光谱指数反演植被叶绿素含量的光谱尺度效应进行验证。结果表明,通用光谱指数(vegetation index based on universal pattern decomposition method,VIUPD)反演叶绿素含量的精度最高,反演值与真实值拟合程度最好;归一化差值植被指数(normalized difference vegetation index,NDVI)和简单比值指数(simple ratio index,SRI)其次,虽然其决定系数R^2高达0.89以上,但反演的叶绿素含量值小于真实值;其他光谱指数的反演结果较差。VIUPD对叶绿素含量具有较好的相关性和敏感性,受光谱尺度效应影响较小,具有较好的反演能力,这一结论恰好验证了其"独立于传感器"的特性,同时证明了VIUPD在多源遥感数据反演植被理化参量的研究中具有更好的应用前景。