In this paper, we performed an investigation of the dissipative solitons of the two-dimensional (2D) Complex Swift-Hohenberg equation (CSHE). Stationary to pulsating soliton bifurcation analysis of the 2D CSHE is disp...In this paper, we performed an investigation of the dissipative solitons of the two-dimensional (2D) Complex Swift-Hohenberg equation (CSHE). Stationary to pulsating soliton bifurcation analysis of the 2D CSHE is displayed. The approach is based on the semi-analytical method of collective coordinate approach. This method is constructed on a reduction from an infinite-dimensional dynamical dissipative system to a finite-dimensional model. The reduced model helps to obtain approximately the boundaries between the stationary and pulsating solutions. We analyzed the dynamics and characteristics of the pulsating solitons. Then we obtained the bifurcation diagram for a definite range of the saturation of the Kerr nonlinearity values. This diagram reveals the effect of the saturation of the Kerr nonlinearity on the period pulsations. The results show that when the parameter of the saturation of the Kerr nonlinearity increases, one period pulsating soliton solution bifurcates to double period pulsations.展开更多
Dark soliton solutions of the one-dimensional complex Ginzburg-Landau equation (CGLE) are analysed for the case of normal group-velocity dispersion. The CGLE can be transformed to the nonlinear Schrodinger equation ...Dark soliton solutions of the one-dimensional complex Ginzburg-Landau equation (CGLE) are analysed for the case of normal group-velocity dispersion. The CGLE can be transformed to the nonlinear Schrodinger equation (NLSE) with perturbation terms under some practical conditions. The main properties of dark solitons are analysed by applying the direct perturbation theory of the NLSE. The results obtained may be helpful for the research on the optical soliton transmission system.展开更多
文摘In this paper, we performed an investigation of the dissipative solitons of the two-dimensional (2D) Complex Swift-Hohenberg equation (CSHE). Stationary to pulsating soliton bifurcation analysis of the 2D CSHE is displayed. The approach is based on the semi-analytical method of collective coordinate approach. This method is constructed on a reduction from an infinite-dimensional dynamical dissipative system to a finite-dimensional model. The reduced model helps to obtain approximately the boundaries between the stationary and pulsating solutions. We analyzed the dynamics and characteristics of the pulsating solitons. Then we obtained the bifurcation diagram for a definite range of the saturation of the Kerr nonlinearity values. This diagram reveals the effect of the saturation of the Kerr nonlinearity on the period pulsations. The results show that when the parameter of the saturation of the Kerr nonlinearity increases, one period pulsating soliton solution bifurcates to double period pulsations.
基金Project supported by the National Natural Science Foundation of China (Grant No 10375022) and Scientific Research Fund of Hunan Provincial Education Department of China (Grant No 05C414).
文摘Dark soliton solutions of the one-dimensional complex Ginzburg-Landau equation (CGLE) are analysed for the case of normal group-velocity dispersion. The CGLE can be transformed to the nonlinear Schrodinger equation (NLSE) with perturbation terms under some practical conditions. The main properties of dark solitons are analysed by applying the direct perturbation theory of the NLSE. The results obtained may be helpful for the research on the optical soliton transmission system.