为了克服传统语音端点检测算法在低信噪比环境下准确率低的问题,提出一种基于谱熵梅尔积(MFPH)的语音端点检测算法.首先,提取带噪语音信号的梅尔频率倒谱系数中的第一维参数MFCC0,将其与谱熵的乘积作为最终区分语音段和背景噪声段的融...为了克服传统语音端点检测算法在低信噪比环境下准确率低的问题,提出一种基于谱熵梅尔积(MFPH)的语音端点检测算法.首先,提取带噪语音信号的梅尔频率倒谱系数中的第一维参数MFCC0,将其与谱熵的乘积作为最终区分语音段和背景噪声段的融合特征参数;然后,结合模糊C均值聚类算法和贝叶斯信息准则(BIC)算法对MFPH特征参数门限值进行自适应估计;最后,采用双门限法进行语音端点检测.实验结果证明,与传统方法比较,该方法在-5~15 d B低信噪比环境下的语音端点检测准确率有较大提高.展开更多
文摘为了克服传统语音端点检测算法在低信噪比环境下准确率低的问题,提出一种基于谱熵梅尔积(MFPH)的语音端点检测算法.首先,提取带噪语音信号的梅尔频率倒谱系数中的第一维参数MFCC0,将其与谱熵的乘积作为最终区分语音段和背景噪声段的融合特征参数;然后,结合模糊C均值聚类算法和贝叶斯信息准则(BIC)算法对MFPH特征参数门限值进行自适应估计;最后,采用双门限法进行语音端点检测.实验结果证明,与传统方法比较,该方法在-5~15 d B低信噪比环境下的语音端点检测准确率有较大提高.