高时间、高空间分辨率的遥感影像能够在空间、时间尺度上精细刻画植被生物物理特征和结构特性及其在空间、时间上的变化,对监测植被生态特征有着重要的作用.为有效记录地表特征的变化,本文提出了一种基于像元降尺度的时空遥感数据融合算...高时间、高空间分辨率的遥感影像能够在空间、时间尺度上精细刻画植被生物物理特征和结构特性及其在空间、时间上的变化,对监测植被生态特征有着重要的作用.为有效记录地表特征的变化,本文提出了一种基于像元降尺度的时空遥感数据融合算法(downscaling difference spatial and temporal data fusion algorithm,DDSTDFA).该方法分别开展基于Landsat、MODIS和NOAA影像的模拟与真实实验,与已有STDFA(spatial and temporal data fusion algorithm)和FSDAF(flexible spatiotemporal data fusion)进行对比.结果表明,DDSTDFA算法表现出以下优势:1)DDSTDFA算法能够同时预测地表特征发生的多种变化方向,改进了基于像元分解算法的缺陷,与STDFA相比在变化区域表现出更高的精度;2)DDSTDFA融合影像的空间分布特征更接近真实影像,消除像元分解融合法中常见的"图斑""边界"问题;3)与FSDAF算法相比,DDSTDFA算法在保证影像融合精度的前提下,运行速度提高了50%~60%.因此,DDSTDFA算法更适合于大范围高时空影像数据融合,为地表动态监测提供丰富的遥感影像数据源.展开更多
文摘高时间、高空间分辨率的遥感影像能够在空间、时间尺度上精细刻画植被生物物理特征和结构特性及其在空间、时间上的变化,对监测植被生态特征有着重要的作用.为有效记录地表特征的变化,本文提出了一种基于像元降尺度的时空遥感数据融合算法(downscaling difference spatial and temporal data fusion algorithm,DDSTDFA).该方法分别开展基于Landsat、MODIS和NOAA影像的模拟与真实实验,与已有STDFA(spatial and temporal data fusion algorithm)和FSDAF(flexible spatiotemporal data fusion)进行对比.结果表明,DDSTDFA算法表现出以下优势:1)DDSTDFA算法能够同时预测地表特征发生的多种变化方向,改进了基于像元分解算法的缺陷,与STDFA相比在变化区域表现出更高的精度;2)DDSTDFA融合影像的空间分布特征更接近真实影像,消除像元分解融合法中常见的"图斑""边界"问题;3)与FSDAF算法相比,DDSTDFA算法在保证影像融合精度的前提下,运行速度提高了50%~60%.因此,DDSTDFA算法更适合于大范围高时空影像数据融合,为地表动态监测提供丰富的遥感影像数据源.