期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
面向空气质量的时空混合预测模型 被引量:12
1
作者 黄伟建 李丹阳 黄远 《计算机应用》 CSCD 北大核心 2020年第11期3385-3392,共8页
由于城市中各区域空气质量同时存在时间与空间维度上的相关性,而传统深度学习模型结构比较单一,并且难以从时空角度进行建模。针对该问题提出一种可以同时提取空气质量间复杂时空关系的STAQI模型用于空气质量预测。该模型由局部组件和... 由于城市中各区域空气质量同时存在时间与空间维度上的相关性,而传统深度学习模型结构比较单一,并且难以从时空角度进行建模。针对该问题提出一种可以同时提取空气质量间复杂时空关系的STAQI模型用于空气质量预测。该模型由局部组件和全局组件构成,分别用于描述本地污染物浓度和邻近站点空气质量状况对目标站点空气质量预测产生的影响,并利用加权融合组件输出获得预测结果。在全局组件中,利用图卷积网络改进门控循环单元网络的输入部分,从而提取出输入数据中的空间特征。最后将STAQI模型与多种基准模型和变体模型进行对比。其中,STAQI模型与门控循环单元模型和全局组件变体模型相比,均方根误差(RMSE)分别下降约19%和16%。结果表明STAQI模型对于任意时间窗口都具有最佳预测性能,并且对不同目标站点的预测结果验证了该模型具有较强的泛化能力。 展开更多
关键词 空气质量预测 时空数据 图卷积网络 长短期记忆 门控循环单元 深度学习
下载PDF
基于多时空图卷积网络的交通流预测 被引量:11
2
作者 戴俊明 曹阳 +1 位作者 沈琴琴 施佺 《计算机应用研究》 CSCD 北大核心 2022年第3期780-784,共5页
交通流预测在交通管理和城市规划的应用中具有重要意义,然而现有的预测方法无法充分挖掘其潜在的复杂时空相关性,为进一步挖掘路网道路网络数据的时空特性以提高预测精度,提出一种多时空图卷积网络(multi-spatial-temporal graph convol... 交通流预测在交通管理和城市规划的应用中具有重要意义,然而现有的预测方法无法充分挖掘其潜在的复杂时空相关性,为进一步挖掘路网道路网络数据的时空特性以提高预测精度,提出一种多时空图卷积网络(multi-spatial-temporal graph convolutional network,MST-GCN)模型。首先,利用切比雪夫图卷积(ChebNet)结合门控循环单元(GRU)构建时空组件以深度挖掘节点的时空相关性;其次,分别提取周相关、日相关、邻近时间的序列数据,输入三个时空组件以深度挖掘不同时间窗口间的时间相关性;最后,将时空组件与编码器—解码器网络结构(encoder-decoder)融合组建MST-GCN模型。利用加利福尼亚州交通局(Caltrans)性能评估系统中高速公路数据集PEMS04和PEMS08进行实验,结果表明新模型的性能明显优于门控循环单元模型和最近提出的扩散卷积循环神经网络(DCRNN)、时间图卷积网络(T-GCN)、基于注意力机制的时空图卷积神经网络(ASTGCN)和时空同步图卷积网络(STSGCN)模型。 展开更多
关键词 交通流预测 时空相关性 编码器—解码器 切比雪夫多项式 图卷积网络
下载PDF
基于图卷积网络和门控循环单元的多站点气温预测模型 被引量:8
3
作者 马栋林 马司周 王伟杰 《计算机应用》 CSCD 北大核心 2022年第1期287-293,共7页
时空预测任务在神经科学、交通、气象等领域应用广泛。气温预测作为典型的时空预测任务,需要挖掘气温数据中固有的时空特征。针对现有气温预测算法存在预测误差大、空间特征提取不充分的问题,提出一种基于图卷积网络和门控循环单元的气... 时空预测任务在神经科学、交通、气象等领域应用广泛。气温预测作为典型的时空预测任务,需要挖掘气温数据中固有的时空特征。针对现有气温预测算法存在预测误差大、空间特征提取不充分的问题,提出一种基于图卷积网络和门控循环单元的气温预测(GCN-GRU)模型。首先,使用重新分配权重和多阶近邻连接方式修正图卷积网络(GCN),以有效挖掘气象数据独特的空间特征;然后,将门控循环单元(GRU)中每个循环单元的矩阵乘法替换成图卷积操作,并将所有的循环单元串联起来构成图卷积门控层;接着,使用图卷积门控层搭建网络主体结构来提取数据的时空特征;最后,通过一个全连接的输出层输出气温预测结果。通过与GRU和长短期记忆网络(LSTM)等单一模型对比,GCN-GRU模型的平均绝对误差(MAE)分别减小了0.67和0.83;与切比雪夫图卷积和长短期记忆网络结合的预测模型(Cheb-LSTM)、图卷积网络和长短期记忆网络结合的预测模型(GCN-LSTM)对比,平均绝对误差分别减小了0.36和0.23。 展开更多
关键词 时空预测 气温预测 多站点 时空特征 图卷积网络 门控循环单元
下载PDF
一种时空协同的图卷积长短期记忆网络及其工业软测量应用 被引量:6
4
作者 常树超 赵春晖 《控制与决策》 EI CSCD 北大核心 2022年第1期77-86,共10页
软测量技术的发展有效解决了工业过程中对于难以直接测量的质量变量的感知困难,为过程的控制与优化提供了有力保障.通常在含有多个质量变量的过程中,样本间的时序关系和多个质量变量间相互影响的空间关系能够反映过程本身的特性,这种时... 软测量技术的发展有效解决了工业过程中对于难以直接测量的质量变量的感知困难,为过程的控制与优化提供了有力保障.通常在含有多个质量变量的过程中,样本间的时序关系和多个质量变量间相互影响的空间关系能够反映过程本身的特性,这种时空特性的挖掘有益于软测量模型性能的提升,而传统软测量方法往往局限于对时序关系的学习而并未考虑对质量变量间的空间关系进行有效利用.对此,提出一种时空协同的图卷积长短期记忆网络(graph convolution long short-term memory networks,GC-LSTM),并应用于工业软测量场景.采用多通道网络结构将图卷积网络的空间关系挖掘能力与长短期记忆网络的时序关系学习能力相结合,对过程进行时空协同学习以实现软测量应用.具体而言,每条通道用于对每种质量变量进行独立学习;对于过程的时序特性,利用各通道内的长短期记忆网络提取针对不同质量变量的时序特征;对于过程的空间特性,构建质量变量间空间关系的图结构,采用跨通道的图卷积运算将不同通道内不同质量变量的时序特征基于空间关系进行融合,得到兼具过程时空特性的特征,从而在软测量建模中实现过程时空协同学习与融合.通过某燃煤电厂磨煤机的实际生产数据验证了所提出的方法对软测量性能提升的有效性. 展开更多
关键词 时空协同 图卷积网络 长短期记忆网络 软测量
原文传递
时空特性下基于图卷积神经网络的风电集群功率短期预测方法
5
作者 乔宽龙 董存 +2 位作者 车建峰 蒋建东 王勃 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期95-103,共9页
为解决传统风电集群功率预测方法忽略了不同位置点气象关联特性及单场预测无法快速得到风电集群整体功率的问题,并充分考虑到风电集群耦合的复杂时空特性,提出一种融合注意力机制的时空图卷积神经网络的风电集群功率短期预测方法。首先... 为解决传统风电集群功率预测方法忽略了不同位置点气象关联特性及单场预测无法快速得到风电集群整体功率的问题,并充分考虑到风电集群耦合的复杂时空特性,提出一种融合注意力机制的时空图卷积神经网络的风电集群功率短期预测方法。首先,计算区域内风电场站历史功率之间的互信息,提取特征邻接矩阵,并结合影响集群功率的气象特征变量转化为气象图数据。其次,构建图卷积神经网络(GCN)模型,从非欧式空间提取气象图节点关联特征。并馈入融合注意力机制(AM)的门控循环单元网络(GRU)增强时序特征中关键信息对风电集群功率的贡献程度。最后,基于中国西部某省风电集群的实际运行数据,验证所提方法的先进性和适应性。 展开更多
关键词 风电功率 图数据结构 深度学习 时空特性 图卷积神经网络 注意力机制
下载PDF
基于知识图谱和时空扩散图卷积网络的港口交通流量预测
6
作者 薛桂香 王辉 +2 位作者 周卫峰 刘瑜 李岩 《计算机应用》 CSCD 北大核心 2024年第9期2952-2957,共6页
由于港口交通流量具有随机不确定性、时间不平稳特征,因此港口交通流量的精准预测是一项具有挑战性的任务。为了提高港口交通流量预测精度,考虑气象条件和港口相邻高速公路开闭状态等外部干扰因素,提出了一种基于知识图谱和时空扩散图... 由于港口交通流量具有随机不确定性、时间不平稳特征,因此港口交通流量的精准预测是一项具有挑战性的任务。为了提高港口交通流量预测精度,考虑气象条件和港口相邻高速公路开闭状态等外部干扰因素,提出了一种基于知识图谱和时空扩散图卷积网络的港口交通流量预测算法KG-DGCN-GRU。知识图谱表示港口交通网络相关因素,知识表示方法从港口知识图谱中学习各外部因素的语义信息,扩散图卷积网络(DGCN)和门控循环单元(GRU)能有效挖掘港口交通流量的时空依赖特征。基于天津港交通数据集的实验结果表明,KG-DGCN-GRU能通过知识图谱和扩散图卷积有效提高预测精度,在单步预测(15 min)中与时间图卷积网络(T-GCN)和扩散卷积递归神经网络(DCRNN)相比,均方根误差(RMSE)分别降低了4.85%和7.04%,平均绝对误差(MAE)分别降低了5.80%和8.17%。 展开更多
关键词 港口交通流量预测 知识图谱 时空依赖 门控循环单元 图卷积网络
下载PDF
云边协同下时空特征融合的轴承剩余寿命预测
7
作者 潘隆基 唐向红 +2 位作者 陆见光 刘方杰 刘汝迪 《组合机床与自动化加工技术》 北大核心 2024年第5期116-121,125,共7页
为了解决滚动轴承剩余使用寿命(remaining useful life, RUL)预测中的特征依赖关系、表征退化趋势和实时性问题,提出了一种云边协同下时空特征融合的轴承剩余寿命预测方法。首先,在离线阶段依据专家先验知识对轴承历史退化数据进行去噪... 为了解决滚动轴承剩余使用寿命(remaining useful life, RUL)预测中的特征依赖关系、表征退化趋势和实时性问题,提出了一种云边协同下时空特征融合的轴承剩余寿命预测方法。首先,在离线阶段依据专家先验知识对轴承历史退化数据进行去噪处理;其次,对去噪信号进行时域与频域退化特征的提取,并对提取的退化特征进行分析与筛选;最后,采用皮尔逊相关系数对选取的退化特征进行相似相关性分析,并根据相似相关参数构建特征空间图作为图卷积网络(graph convolutional network, GCN)-Transformer模型输入以进行训练,并在云边协同实时预测阶段测试以减轻云端负担。在XJTU-SY数据集上的实验中,所提方法与其他文献预测方法相比在MAE与RMSE指标上分别降低了10.5%与11.3%,在平均响应时间(实时性指标)上降低到采用云计算策略的0.363。实验结果验证了所提方法的有效性。 展开更多
关键词 滚动轴承 剩余使用寿命 时空特征融合 云边协同 图卷积网络
下载PDF
基于时空依赖关系和特征融合的弱监督视频异常检测
8
作者 柳德云 李莹 +1 位作者 周震 吉根林 《数据采集与处理》 CSCD 北大核心 2024年第1期204-214,共11页
弱监督视频异常检测由于抗干扰性强、数据标注要求低,成为视频异常事件检测研究的热点。在现有的工作中,大多数弱监督视频异常检测方法认为各个视频段独立同分布,单独判断每个视频段是否异常,忽略了视频段间的时空依赖关系。为此,提出... 弱监督视频异常检测由于抗干扰性强、数据标注要求低,成为视频异常事件检测研究的热点。在现有的工作中,大多数弱监督视频异常检测方法认为各个视频段独立同分布,单独判断每个视频段是否异常,忽略了视频段间的时空依赖关系。为此,提出了一种基于时空依赖关系和特征融合的弱监督视频异常检测方法,在保留视频段原始特征的同时,使用视频段之间的索引距离和特征相似程度拟合视频段的时间和空间依赖关系,构建视频段的关系特征。通过融合原始特征和关系特征,更好地表达视频的动态特性和时序关系。在UCF-Crime和ShanghaiTech两个基准数据集上进行了大量实验,实验结果表明所提方法的AUC指标优于其他方法,AUC值分别达到了80.1%和94.6%。 展开更多
关键词 视频异常事件检测 时空依赖关系 特征融合 图卷积神经网络 注意力机制
下载PDF
跨模态语义时空动态交互情感分析研究
9
作者 屈立成 郤丽媛 +2 位作者 刘紫君 魏思 董哲为 《计算机工程与应用》 CSCD 北大核心 2024年第1期165-173,共9页
针对传统情感分析中存在的模态间交互性差、时空特征融合度低的问题,建立了一种跨模态的语义时空动态交互网络。通过引入双向长短期记忆网络挖掘各模态的时间序列特征,加入自注意力机制强化模态内特征的权重赋值,将自动筛选出的特征矩... 针对传统情感分析中存在的模态间交互性差、时空特征融合度低的问题,建立了一种跨模态的语义时空动态交互网络。通过引入双向长短期记忆网络挖掘各模态的时间序列特征,加入自注意力机制强化模态内特征的权重赋值,将自动筛选出的特征矩阵送入图卷积神经网络进行语义交互。然后以时间戳为基础进行特征聚合,计算聚合层的相关系数,获得融合后的联合特征,实现跨模态空间交互,最终完成情感极性的分类与预测。使用公开数据集对所提出的模型进行评估验证,实验结果表明,多模态时间序列提取和跨模态语义空间交互机制可以实现模态内和模态间特征的全动态融合,有效地提升了情感分类的准确率和F1值,在CMU-MOSEI数据集上分别提高了1.7%~13.5%和2.1%~14.0%,表现出良好的健壮性和先进性。 展开更多
关键词 跨模态情感分析 语义交互 时空交互 双向长短期记忆网络 图卷积网络
下载PDF
面向大规模交通网络的时空关联挖掘方法 被引量:1
10
作者 范晓亮 彭朝鹏 +1 位作者 郑传潘 王程 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第9期1317-1325,共9页
时空关联挖掘是智能交通领域的关键技术之一。大规模交通网络中的交通流量数据具有高度非线性和复杂特征,故精准地预测交通流量面临巨大挑战。现有方法大多设计2个独立模块来分别捕获交通流量的时间和空间相关性,故无法精准地对流量数... 时空关联挖掘是智能交通领域的关键技术之一。大规模交通网络中的交通流量数据具有高度非线性和复杂特征,故精准地预测交通流量面临巨大挑战。现有方法大多设计2个独立模块来分别捕获交通流量的时间和空间相关性,故无法精准地对流量数据中的复杂时空相关性建模。该文提出一种时空组合图卷积神经网络(STCGCN),以更好地预测交通流量。STCGCN通过构建自适应时空组合图,并提出时空组合图卷积,来有效揭示交通流量数据动态和复杂的时空相关性。在美国加利福尼亚州高速公路流量公开数据集上进行了实验,结果表明STCGCN的预测效果优于11个现有方法。 展开更多
关键词 交通流量预测 时空数据挖掘 图卷积网络 大数据融合分析
原文传递
基于时空融合图卷积的交通流数据修复方法 被引量:3
11
作者 侯越 韩成艳 +1 位作者 郑鑫 邓志远 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第7期1394-1403,共10页
为了解决现有时空相关修复法挖掘交通流特性不充分的问题,提出基于时空融合图卷积网络的缺失数据修复方法.该方法在分析交通流时空特性的基础上,采用2类函数分别计算交通流数据的时间自相关系数和空间关联度系数.将交通检测器的部署位... 为了解决现有时空相关修复法挖掘交通流特性不充分的问题,提出基于时空融合图卷积网络的缺失数据修复方法.该方法在分析交通流时空特性的基础上,采用2类函数分别计算交通流数据的时间自相关系数和空间关联度系数.将交通检测器的部署位置作为节点构成几何拓扑图,通过线性融合规则构建时空融合矩阵,替代图卷积输入层的邻接矩阵,捕获交通流细粒化的时空关系.利用轻量级一维卷积层学习多通道时序向量的时间特征,加快模型的收敛速度.利用图卷积层学习交通流数据的空间特征,构建时空融合图卷积网络修复模型.实验结果表明,与其他修复方法相比,该方法在多检测器场景中的修复精度和模型收敛速度均有所提升,可以有效地修复交通流缺失数据. 展开更多
关键词 交通工程 时空融合 交通流数据修复 图卷积网络 一维卷积
下载PDF
基于多特征融合的GraphHeat-ChebNet隧道形变预测模型
12
作者 熊安萍 李梦凡 龙林波 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第1期164-175,共12页
对隧道的形变进行预测是隧道结构异常检测的内容之一。为了充分挖掘形变特征的时空关联性,针对隧道内衬多个断面的形变同时预测,提出一种基于多特征融合的GraphHeat-ChebNet隧道形变预测模型。所提模型中利用GraphHeat和ChebNet这2种图... 对隧道的形变进行预测是隧道结构异常检测的内容之一。为了充分挖掘形变特征的时空关联性,针对隧道内衬多个断面的形变同时预测,提出一种基于多特征融合的GraphHeat-ChebNet隧道形变预测模型。所提模型中利用GraphHeat和ChebNet这2种图卷积网络(graph convolution net,GCN)分别提取特征信号的低频和高频部分,并获取形变特征的空间关联性,ConvGRUs网络用于提取特征在时间上的关联性,通过三阶段融合方法保留挖掘的信息。为了解决实验数据在时间维度上不充足的问题,引入双层滑动窗口机制。此外,所提模型与其他模型或算法在不同数据集上实验比较,衡量一天和两天预测值的误差指标优于其他模型,而且对大部分节点预测的误差较低。说明模型受样本节点数影响较小,能较好地预测一天和两天的形变,模型学习特征与时空模式的能力较强,泛化性较好。 展开更多
关键词 隧道形变 预测模型 融合时空数据 滑动窗口 图卷积网络(GCN)
下载PDF
基于改进的多算法融合地铁站内乘客行为识别
13
作者 章宇翔 李先旺 +3 位作者 贺德强 贺岁球 陈彦君 李琴 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第11期4096-4106,共11页
乘客的行为识别在保障乘客安全方面发挥着重要作用,它能提高地铁站对乘客安全的管理能力。然而,由于地铁车站内乘客人数众多,在出现照明变化和人员遮挡时会严重影响识别的准确率。为了解决准确率低的问题,在时空图卷积神经网络(STGCN)... 乘客的行为识别在保障乘客安全方面发挥着重要作用,它能提高地铁站对乘客安全的管理能力。然而,由于地铁车站内乘客人数众多,在出现照明变化和人员遮挡时会严重影响识别的准确率。为了解决准确率低的问题,在时空图卷积神经网络(STGCN)的基础上结合有效通道注意力网络(ECANet),加强了不同节点的连接,提出一种STEGCN节点注意力算法。此外,为了进一步提高准确率,采用双流结构,更进一步提出一种2s-STEGCN算法。应用Alphapose框架,结合YOLOv5_m目标检测算法、SPPE单人姿态估计算法和2s-STEGCN算法,提出一种改进的多算法融合行为识别方法用于地铁站内乘客的行为识别。首先,利用YOLOv5_m对乘客进行框定;然后,通过SPPE对框定的乘客进行骨骼关键点提取;最后,将提取到的骨骼关键点以坐标的形式输入2s-STEGCN,完成乘客的行为识别。为了验证2s-STEGCN算法的有效性,使用南宁地铁1号线的客流数据集分别在单人场景与多人场景下开展实验。实验结果表明:在损失值方面,2s-STEGCN具有最低的损失值,它的损失值仅为0.244,比STGCN的损失值低约0.025,这表明了2s-STEGCN具有更强的模型构建能力。在准确率方面,单人场景下的2s-STEGCN拥有最高的准确率,它的准确率达到96.13%,比STGCN高3.69%。此外,2sSTEGCN的准确率在多人场景下也有明显提升。该实验结果可为地铁乘客行为识别提供参考和理论支持。 展开更多
关键词 行为识别 时空图卷积 目标检测 姿态估计
下载PDF
基于ASTG-CRNN模型的多步长交通流预测
14
作者 贵向泉 熊家昌 +1 位作者 李立 郭莎莎 《计算机技术与发展》 2023年第9期141-148,共8页
针对交通流预测模型中路网表征结构难以进行刻画和交通流数据中动态时空相关性难以进行建模以及其中时间特征捕获不充分的问题,提出一种基于注意力机制和时空图卷积循环神经网络的交通流预测模型(ASTG-CRNN)。首先,通过定义节点相对邻... 针对交通流预测模型中路网表征结构难以进行刻画和交通流数据中动态时空相关性难以进行建模以及其中时间特征捕获不充分的问题,提出一种基于注意力机制和时空图卷积循环神经网络的交通流预测模型(ASTG-CRNN)。首先,通过定义节点相对邻近度来确定路网表征结构的关系权重;其次,通过在时空维度上引入注意力机制对动态时空相关性进行建模,再采用图卷积捕获交通流数据中的空间特征;最后,采用卷积神经网络和双向门控循环神经单元的组合模块共同捕捉时间特征,从而能更好地表达交通流的时空特性。在两个公开交通流数据集PeMS04和PeMS08上对模型预测效果进行验证,其结果表明,ASTG-CRNN模型的预测结果均优于其它模型,与时空同步图卷积网络模型(STSGCN)相比,在未来1h内预测结果的MAE、RMSE和MAPE在数据集PeMS08上分别降低了2.71、2.69和0.87%。 展开更多
关键词 交通流预测 注意力机制 相对邻近度 时空相关性 图卷积网络 循环神经网络
下载PDF
多信息融合的时空图卷积交通流量预测模型
15
作者 孟闯 王慧 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第8期1541-1550,共10页
为了深入挖掘交通流量的时空特征以提高预测精度,提出改进的融合距离与周期性因素的多信息融合的时空图卷积门控神经网络.将路网中各个路段作为节点并根据路段间邻接关系建立路网图结构;考虑路段间距离对空间相关性的影响,计算路段之间... 为了深入挖掘交通流量的时空特征以提高预测精度,提出改进的融合距离与周期性因素的多信息融合的时空图卷积门控神经网络.将路网中各个路段作为节点并根据路段间邻接关系建立路网图结构;考虑路段间距离对空间相关性的影响,计算路段之间的空间影响度大小,给予图邻接矩阵不同的权重.在模型构建中,设计空间图卷积模块与时间序列预测模块;通过空间图卷积模块提取空间特征信息,并将提取的空间特征信息与交通流量周期序列信息相融合,传入时间序列预测模块;重新设计门控循环单元(GRU)的门控机制算法达到多源信息共同输入的目的,最终得到预测输出.实验在真实的公路交通流量PEMS数据集上进行多时段测试,结果表明,与目前基于图卷积的预测方法相比,所设计的模型预测误差更低,预测性能更优. 展开更多
关键词 智能交通 交通流量预测 时空序列预测 时空相关性 图卷积网络 门控循环单元
下载PDF
基于时空网络的地铁进出站客流量预测 被引量:3
16
作者 刘臣 陈静娴 +2 位作者 郝宇辰 李秋 甄俊涛 《计算机工程与应用》 CSCD 北大核心 2021年第18期248-254,共7页
客流量预测是城市智能交通系统的重要组成部分,对人们出行和交通管控有着重要的指导意义。针对地铁客流量数据具有时间维度和空间维度属性的特点,提出一种可以同时捕获数据时空特征的预测模型。该模型基于编码器解码器架构设计,其中解... 客流量预测是城市智能交通系统的重要组成部分,对人们出行和交通管控有着重要的指导意义。针对地铁客流量数据具有时间维度和空间维度属性的特点,提出一种可以同时捕获数据时空特征的预测模型。该模型基于编码器解码器架构设计,其中解码器和编码器均由时空预测模块组成,在该模块中利用图卷积学习地铁站的空间拓朴结构、门控循环单元来捕获数据的时间特征。此外,模型将单位时间间隔内进站和出站客流量分别构成的两个时间序列,即进出站双时间序列作为输入,最终协同预测各站点的进站与出站人数。在上海地铁一卡通数据集上进行对比实验,实验结果表明,所提出的模型在进站与出站客流量预测上均取得了更好的效果,这表明考虑空间依赖能够有效地提高模型预测精度。 展开更多
关键词 客流量预测 时空数据 编码器解码器 图卷积网络 门控循环单元
下载PDF
基于时空图卷积网络的电力系统暂态稳定评估 被引量:21
17
作者 庄颖睿 肖谭南 +2 位作者 程林 陈颖 关慧哲 《电力系统自动化》 EI CSCD 北大核心 2022年第11期11-18,共8页
快速准确的电力系统暂态稳定分析对电力系统安全稳定运行有着重要意义。现代电力系统设备元件日趋复杂多样导致系统非线性日益增强,作为电力系统暂态稳定分析传统方法的时域仿真法过于耗时。针对此问题,提出了一种基于时空图卷积网络模... 快速准确的电力系统暂态稳定分析对电力系统安全稳定运行有着重要意义。现代电力系统设备元件日趋复杂多样导致系统非线性日益增强,作为电力系统暂态稳定分析传统方法的时域仿真法过于耗时。针对此问题,提出了一种基于时空图卷积网络模型的暂态稳定分析方法,将短时仿真与神经网络预测相结合,减少暂态稳定分析所需时间,可用于多种仿真分析场景。该方法将暂态稳定分析建模为样本空间映射问题,利用数据驱动方法训练神经网络模型,建立从暂态过程电网空间结构与时序潮流数据到暂态稳定的映射。模型通过同时提取暂态过程故障前、故障中、故障后的电网空间结构特征和时序潮流特征来实现对系统暂态稳定的快速准确判断。与传统暂态稳定分析方法相比,所提出的方法仅需进行短时间仿真分析,提高了分析效率。与其他机器学习模型相比,时空图卷积网络模型同时挖掘电力系统暂态过程的空间特征和时间特征,引入了更多与稳定性相关的先验知识,具有更优的特征挖掘能力和分析性能。基于新英格兰39节点系统的测试结果验证了所提方法的可行性、有效性和优越性。 展开更多
关键词 电力系统 暂态稳定分析 特征分析 数据驱动 神经网络 时空图卷积网络
下载PDF
基于时空图卷积网络的短期空间负荷预测方法 被引量:6
18
作者 张鹏飞 胡博 +3 位作者 何金松 胡展硕 刘桁宇 刘育博 《电力系统自动化》 EI CSCD 北大核心 2023年第13期78-85,共8页
为充分利用Ⅰ类元胞负荷之间的空间影响性,提高空间负荷预测精度,提出了一种基于时空图卷积网络的短期空间负荷预测方法。首先,将各Ⅰ类元胞视为节点,各Ⅰ类元胞的历史负荷作为节点的特征信息,各Ⅰ类元胞之间的电网拓扑结构作为边,构建... 为充分利用Ⅰ类元胞负荷之间的空间影响性,提高空间负荷预测精度,提出了一种基于时空图卷积网络的短期空间负荷预测方法。首先,将各Ⅰ类元胞视为节点,各Ⅰ类元胞的历史负荷作为节点的特征信息,各Ⅰ类元胞之间的电网拓扑结构作为边,构建一个空间负荷时空信息图。然后,根据空间负荷时空信息图中的拓扑结构和距离信息,采用阈值高斯核方法确定时空图卷积网络的邻接矩阵。最后,将空间负荷时空信息图采用时空图卷积网络进行训练,得到空间负荷预测模型,以中国某市某一区域的数据为例,与现有方法进行对比,验证了所提方法的有效性。 展开更多
关键词 负荷预测 时空图卷积网络 特征挖掘 元胞
下载PDF
基于时空图卷积神经网络的光伏发电功率超短期预测方法 被引量:5
19
作者 李立刚 孙立群 +1 位作者 戴永寿 李林 《热能动力工程》 CAS CSCD 北大核心 2023年第9期152-157,173,共7页
为了解决传统光伏电站超短期功率预测方法不能同时准确提取发电功率的时间和空间特征的问题,提出一种基于时空图卷积神经网络的光伏发电功率超短期预测方法。针对同一区域内的多个光伏电站,首先对电站进行图建模,利用图卷积网络(GCN)与... 为了解决传统光伏电站超短期功率预测方法不能同时准确提取发电功率的时间和空间特征的问题,提出一种基于时空图卷积神经网络的光伏发电功率超短期预测方法。针对同一区域内的多个光伏电站,首先对电站进行图建模,利用图卷积网络(GCN)与门控线性单元(GLU)提取发电功率的时空特征。利用提取到的时空特征信息以及区域内光伏电站的历史发电功率数据训练预测模型,最终实现对多个光伏电站发电功率超短期预测。实验结果表明,该方法能够将超短期功率预测均方根误差减小至1.122%,对工作人员根据实际情况进行电网的调度管理具有重要意义。 展开更多
关键词 时空图卷积 光伏电站 功率预测
原文传递
基于残差时空图卷积网络的3D人体行为识别 被引量:9
20
作者 管珊珊 张益农 《计算机应用与软件》 北大核心 2020年第3期198-201,250,共5页
人体行为识别是智能监控、人机交互等诸多应用领域的一项基本技术。人体骨骼的动态变化为人体行为识别提供了重要的信息。传统方法通常只是采取人工信息标注或遍历规则,从而导致模型的表征能力有限、泛化性能差。采用一种引入了残差项... 人体行为识别是智能监控、人机交互等诸多应用领域的一项基本技术。人体骨骼的动态变化为人体行为识别提供了重要的信息。传统方法通常只是采取人工信息标注或遍历规则,从而导致模型的表征能力有限、泛化性能差。采用一种引入了残差项的动态骨架模型——基于残差连接的时空图卷积网络,不仅克服了以往方法的限制,而且能够学习骨骼数据中的时空模型。在大型骨骼NTU-RGB+D数据集上,该网络模型不仅提高了人体行为特征的表征能力,而且增强了泛化能力,取得了比现有的模型更好的识别效果。 展开更多
关键词 行为识别 残差 骨架模型 时空图卷积网络
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部