针对传统高光谱影像特征提取算法大多仅考虑光谱信息或提取空间信息不够精细的问题,提出了一种监督空间正则化流形鉴别分析(SSRMDA)算法,以提高遥感地物的分类性能。该算法首先利用样本数据的标签信息构建谱域类内图和类间图,以揭示高...针对传统高光谱影像特征提取算法大多仅考虑光谱信息或提取空间信息不够精细的问题,提出了一种监督空间正则化流形鉴别分析(SSRMDA)算法,以提高遥感地物的分类性能。该算法首先利用样本数据的标签信息构建谱域类内图和类间图,以揭示高光谱数据潜在的非线性流形结构;然后构建空域类内图,并将空间信息以正则化方式与光谱信息融合,实现谱-空信息的有效融合,并可在低维空间内使类内数据更加聚集,增强嵌入数据的可分性。在Indian Pines和Washington DC Mall数据集上的实验表明,所提算法的总体分类精度分别为91.58%和96.67%,说明所提算法有效提升了地物分类能力,尤其在小样本下的优势更为明显,更有利于实际应用。展开更多
基金supported by National Natural Science Foundation of China(No.61806006)Jiangsu University Superior Discipline Construction ProjectTalent Introduction Project(No.B12018)。
文摘针对传统高光谱影像特征提取算法大多仅考虑光谱信息或提取空间信息不够精细的问题,提出了一种监督空间正则化流形鉴别分析(SSRMDA)算法,以提高遥感地物的分类性能。该算法首先利用样本数据的标签信息构建谱域类内图和类间图,以揭示高光谱数据潜在的非线性流形结构;然后构建空域类内图,并将空间信息以正则化方式与光谱信息融合,实现谱-空信息的有效融合,并可在低维空间内使类内数据更加聚集,增强嵌入数据的可分性。在Indian Pines和Washington DC Mall数据集上的实验表明,所提算法的总体分类精度分别为91.58%和96.67%,说明所提算法有效提升了地物分类能力,尤其在小样本下的优势更为明显,更有利于实际应用。
文摘基于支持向量相关滤波器(Support Correlation Filters,SCF)的目标跟踪方法存在严重的样本边界不连续问题,因此模型判别能力受到严重限制。本文将空间正则化项引入到SCF中,提出了基于空间正则化约束的支持向量相关滤波器(Spatially Regularized SCF,SRSCF)模型。相比于SCF,SRSCF不仅可以借助更大的图像区域进行模型学习,同时也能缓解样本的边界不连续问题对模型学习的负面影响,由此得到判别能力更强的模型。此外,本文提出了一种ADMM(Alternating Direction Method of Multiplier)算法求解SRSCF模型,其中每个子问题具有解析解。实验结果表明,相较于SCF,SRSCF能够有效地提升跟踪精度,同时仅增加较少的计算开销。