期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进YOLOv3网络结构的遮挡行人检测算法 被引量:11
1
作者 刘丽 郑洋 付冬梅 《模式识别与人工智能》 EI CSCD 北大核心 2020年第6期568-574,共7页
针对YOLOv3算法在监控视频行人检测中对遮挡目标漏检率较高的问题,文中提出改进YOLOv3网络结构的遮挡行人检测算法.首先在网络全连接层引入空间金字塔池化网络,增强网络的多尺度特征融合能力.然后采用网络剪枝的方式,精简网络冗余结构,... 针对YOLOv3算法在监控视频行人检测中对遮挡目标漏检率较高的问题,文中提出改进YOLOv3网络结构的遮挡行人检测算法.首先在网络全连接层引入空间金字塔池化网络,增强网络的多尺度特征融合能力.然后采用网络剪枝的方式,精简网络冗余结构,避免网络层数加深导致的退化和过拟合问题,同时减少参数量.在走廊行人数据集上进行多尺度训练,获得最优的权重模型.实验表明,文中方法在平均准确率和检测速度上都有所提升. 展开更多
关键词 行人检测 深度学习 YOLOv3 空间金字塔池化网络 网络剪枝
下载PDF
基于YOLOV3模型的甘蔗丛环境下行人检测方法 被引量:4
2
作者 邓敏 黄世醒 +3 位作者 黄燕娟 郑丁科 张祺睿 杨丹彤 《农机化研究》 北大核心 2023年第1期8-14,57,共8页
针对在“一垄双沟”甘蔗丛高秆作物环境下行人目标检测的重要性及难度问题,提出一种改进YOLOV3算法的甘蔗丛中高秆作物遮挡的行人目标检测算法(YOLOV3-my-prune)。为获得更好的行人特征表达,使用Imgaug库对自制的数据集增强,并结合数据... 针对在“一垄双沟”甘蔗丛高秆作物环境下行人目标检测的重要性及难度问题,提出一种改进YOLOV3算法的甘蔗丛中高秆作物遮挡的行人目标检测算法(YOLOV3-my-prune)。为获得更好的行人特征表达,使用Imgaug库对自制的数据集增强,并结合数据集中行人尺寸特点,使用K-means聚类分析方法,为神经网络重新聚类目标锚箱。对YOLOV3网络改进,设计了在网络全连接层中引入空间金字塔池化模块,并增加第四尺度预测特征图,同时增强网络多尺度特征融合能力及小尺度特征提取能力。完成改进的模型基础训练后,采用通道和层剪枝混合剪枝方法轻量化模型,并在数据集上进行多尺度训练并测试,结果表明:此方法准确率达80.1%,检测速度为30fps,均有所提升。 展开更多
关键词 行人检测 YOLOV3 空间金字塔池化网络 第四尺度特征图 甘蔗 剪枝
下载PDF
面向密集型场景的多尺度行人检测方法
3
作者 吴迪 宋家豪 李睿智 《沈阳师范大学学报(自然科学版)》 CAS 2023年第6期536-541,共6页
针对目标检测算法对小目标行人识别率低、对监控远处视野目标检测精度不理想的问题,提出了改进YOLOv5高效多尺度特征利用的行人检测算法。首先,通过在原网络中改进高效的特征融合结构,提高模型对深层特征的感知力来提高模型精度;其次,采... 针对目标检测算法对小目标行人识别率低、对监控远处视野目标检测精度不理想的问题,提出了改进YOLOv5高效多尺度特征利用的行人检测算法。首先,通过在原网络中改进高效的特征融合结构,提高模型对深层特征的感知力来提高模型精度;其次,采用Res2Net Block重构骨干网络,加强对细粒度特征信息的利用;最后,加入改进的空间金字塔注意力池化网络,强化模型的多层次特征表达能力。在CrowdHuman数据集进行训练和验证,YOLOv5-SA的平均检测精度达到了85.6%,相比原算法提高了3.8%,检测速度可以达到51 FPS(frames per second),识别精度和检测速度均具有较好的效果,可以有效应用于密集目标行人检测任务。 展开更多
关键词 小目标行人 注意力模块 密集行人检测 空间金字塔池化网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部