期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
残差注意力聚合对偶回归网络超分辨率计算机断层扫描重建
1
作者
范金河
吴静
何茂林
《激光与光电子学进展》
CSCD
北大核心
2023年第2期128-136,共9页
为了改善计算机断层扫描(CT)影像重建质量不高的问题,提出一种基于残差注意力聚合对偶回归网络(RAADRNet)的超分辨率CT重建方法。多特征下采样提取模块(MFDEB)通过平均池化、最大池化和卷积运算完成多特征下采样提取,在多特征融合后嵌...
为了改善计算机断层扫描(CT)影像重建质量不高的问题,提出一种基于残差注意力聚合对偶回归网络(RAADRNet)的超分辨率CT重建方法。多特征下采样提取模块(MFDEB)通过平均池化、最大池化和卷积运算完成多特征下采样提取,在多特征融合后嵌入通道学习注意力(CLA)和空间学习注意力(SLA),同时并入前级融合特征提取图像的浅层特征。CLA、SLA分别引入通道权重特征学习以及激活函数1+tanh()完成特征提取。残差注意力聚合模块(RAAB)通过CLA嵌入残差网络构成的残差通道学习注意力模块(RCLAB)与SLA构成的空间特征融合模块(SFFB)联合提取图像的深层特征。原始网络在浅层特征与通过亚像素卷积放大的深层特征进行特征融合后完成重建。对偶网络进一步约束重建映射函数的解空间。实验表明,所提算法在重建图像的峰值信噪比(PSNR)和结构相似度(SSIM)上都得到了较好的提升。
展开更多
关键词
图像处理
超分辨率计算机断层扫描重建
多特征下采样
通道学习注意力
空间学习注意力
残差注意力聚合
原文传递
题名
残差注意力聚合对偶回归网络超分辨率计算机断层扫描重建
1
作者
范金河
吴静
何茂林
机构
西南科技大学信息工程学院
西南科技大学特殊环境机器人技术四川省重点实验室
出处
《激光与光电子学进展》
CSCD
北大核心
2023年第2期128-136,共9页
基金
特殊环境机器人技术四川省重点实验室基金(13ZXTK07)。
文摘
为了改善计算机断层扫描(CT)影像重建质量不高的问题,提出一种基于残差注意力聚合对偶回归网络(RAADRNet)的超分辨率CT重建方法。多特征下采样提取模块(MFDEB)通过平均池化、最大池化和卷积运算完成多特征下采样提取,在多特征融合后嵌入通道学习注意力(CLA)和空间学习注意力(SLA),同时并入前级融合特征提取图像的浅层特征。CLA、SLA分别引入通道权重特征学习以及激活函数1+tanh()完成特征提取。残差注意力聚合模块(RAAB)通过CLA嵌入残差网络构成的残差通道学习注意力模块(RCLAB)与SLA构成的空间特征融合模块(SFFB)联合提取图像的深层特征。原始网络在浅层特征与通过亚像素卷积放大的深层特征进行特征融合后完成重建。对偶网络进一步约束重建映射函数的解空间。实验表明,所提算法在重建图像的峰值信噪比(PSNR)和结构相似度(SSIM)上都得到了较好的提升。
关键词
图像处理
超分辨率计算机断层扫描重建
多特征下采样
通道学习注意力
空间学习注意力
残差注意力聚合
Keywords
image
processing
super-resolution
computed
tomography
reconstruction
muti-feature
down-sampling:channel
learning
attention
spatial
learning
attention
residual
attention
aggregation
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
残差注意力聚合对偶回归网络超分辨率计算机断层扫描重建
范金河
吴静
何茂林
《激光与光电子学进展》
CSCD
北大核心
2023
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部