Planning in advance to prepare for and respond to a natural hazard-induced disaster-related emergency is a key action that allows decision makers to mitigate unexpected impacts and potential damage. To further this ai...Planning in advance to prepare for and respond to a natural hazard-induced disaster-related emergency is a key action that allows decision makers to mitigate unexpected impacts and potential damage. To further this aim, a collaborative, modular, and information and communications technology-based Spatial Data Infrastructure(SDI)called SIRENE—Sistema Informativo per la Preparazione e la Risposta alle Emergenze(Information System for Emergency Preparedness and Response) is designed and implemented to access and share, over the Internet, relevant multisource and distributed geospatial data to support decision makers in reducing disaster risks. SIRENE flexibly searches and retrieves strategic information from local and/or remote repositories to cope with different emergency phases. The system collects, queries, and analyzes geographic information provided voluntarily by observers directly in the field(volunteered geographic information(VGI) reports) to identify potentially critical environmental conditions. SIRENE can visualize and cross-validate institutional and research-based data against VGI reports,as well as provide disaster managers with a decision support system able to suggest the mode and timing of intervention, before and in the aftermath of different types of emergencies, on the basis of the available information and in agreement with the laws in force at the national andregional levels. Testing installations of SIRENE have been deployed in 18 hilly or mountain municipalities(12 located in the Italian Central Alps of northern Italy, and six in the Umbria region of central Italy), which have been affected by natural hazard-induced disasters over the past years(landslides, debris flows, floods, and wildfire) and experienced significant social and economic losses.展开更多
Since creation of spatial data is a costly and time consuming process, researchers, in this domain, in most of the cases rely on open source spatial attributes for their specific purpose. Likewise, the present researc...Since creation of spatial data is a costly and time consuming process, researchers, in this domain, in most of the cases rely on open source spatial attributes for their specific purpose. Likewise, the present research aims at mapping landslide susceptibility at the metropolitan area of Chittagong district of Bangladesh utilizing obtainable open source spatial data from various web portals. In this regard, we targeted a study region where rainfall induced landslides reportedly causes causalities as well as property damage each year. In this study, however, we employed multi-criteria evaluation (MCE) technique i.e., heuristic, a knowledge driven approach based on expert opinions from various discipline for landslide susceptibility mapping combining nine causative factors—geomorphology, geology, land use/land cover (LULC), slope, aspect, plan curvature, drainage distance, relative relief and vegetation in geographic information system (GIS) environment. The final susceptibility map was devised into five hazard classes viz., very low, low, moderate, high, and very high, representing 22 km2 (13%), 90 km2 (53%);24 km2 (15%);22 km2 (13%) and 10 km2 (6%) areas respectively. This particular study might be beneficial to the local authorities and other stake-holders, concerned in disaster risk reduction and mitigation activities. Moreover this study can also be advantageous for risk sensitive land use planning in the study area.展开更多
基金SIMULATOR-Sistema Integrato ModULAre per la gesTione e prevenzi One dei Rischi-Integrated Modular System for Risk Prevention and Management, financed by the Lombardy regional government, Italy
文摘Planning in advance to prepare for and respond to a natural hazard-induced disaster-related emergency is a key action that allows decision makers to mitigate unexpected impacts and potential damage. To further this aim, a collaborative, modular, and information and communications technology-based Spatial Data Infrastructure(SDI)called SIRENE—Sistema Informativo per la Preparazione e la Risposta alle Emergenze(Information System for Emergency Preparedness and Response) is designed and implemented to access and share, over the Internet, relevant multisource and distributed geospatial data to support decision makers in reducing disaster risks. SIRENE flexibly searches and retrieves strategic information from local and/or remote repositories to cope with different emergency phases. The system collects, queries, and analyzes geographic information provided voluntarily by observers directly in the field(volunteered geographic information(VGI) reports) to identify potentially critical environmental conditions. SIRENE can visualize and cross-validate institutional and research-based data against VGI reports,as well as provide disaster managers with a decision support system able to suggest the mode and timing of intervention, before and in the aftermath of different types of emergencies, on the basis of the available information and in agreement with the laws in force at the national andregional levels. Testing installations of SIRENE have been deployed in 18 hilly or mountain municipalities(12 located in the Italian Central Alps of northern Italy, and six in the Umbria region of central Italy), which have been affected by natural hazard-induced disasters over the past years(landslides, debris flows, floods, and wildfire) and experienced significant social and economic losses.
文摘Since creation of spatial data is a costly and time consuming process, researchers, in this domain, in most of the cases rely on open source spatial attributes for their specific purpose. Likewise, the present research aims at mapping landslide susceptibility at the metropolitan area of Chittagong district of Bangladesh utilizing obtainable open source spatial data from various web portals. In this regard, we targeted a study region where rainfall induced landslides reportedly causes causalities as well as property damage each year. In this study, however, we employed multi-criteria evaluation (MCE) technique i.e., heuristic, a knowledge driven approach based on expert opinions from various discipline for landslide susceptibility mapping combining nine causative factors—geomorphology, geology, land use/land cover (LULC), slope, aspect, plan curvature, drainage distance, relative relief and vegetation in geographic information system (GIS) environment. The final susceptibility map was devised into five hazard classes viz., very low, low, moderate, high, and very high, representing 22 km2 (13%), 90 km2 (53%);24 km2 (15%);22 km2 (13%) and 10 km2 (6%) areas respectively. This particular study might be beneficial to the local authorities and other stake-holders, concerned in disaster risk reduction and mitigation activities. Moreover this study can also be advantageous for risk sensitive land use planning in the study area.