期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于聚焦线性注意力Retinexformer的TEDS图像实时暗光增强方法研究
1
作者 王登飞 苏宏升 +2 位作者 陈光武 陈登科 赵小娟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第11期4840-4850,共11页
列车高速运行下,表面部件易产生机械损伤,影响列车的安全运行。用于损伤检测的动车组运行故障图像检测系统(TEDS)需进行检测的部件形态多样、体积大小不一,且因对列车底部、夜晚进行图像采集时的暗光环境导致图像大部分区域偏暗,对比度... 列车高速运行下,表面部件易产生机械损伤,影响列车的安全运行。用于损伤检测的动车组运行故障图像检测系统(TEDS)需进行检测的部件形态多样、体积大小不一,且因对列车底部、夜晚进行图像采集时的暗光环境导致图像大部分区域偏暗,对比度低,给工作人员对故障的分析和标注带来干扰,影响检测的实时性和准确率,提出一种基于线性聚焦注意力的Retinexformer(RetinexFLAformer)网络对TEDS图像进行暗光增强。首先分析Retinexformer中进行自注意力计算的相似矩阵存在低秩的问题,采用线性聚焦注意力对网络进行改进,在保证计算复杂度不变的情况下,提高相似矩阵的秩以增加网络的特征多样性;其次增加空间一致性损失、曝光控制损失和颜色恒定损失,来抑制由于曝光不均引起的局部区域对比度下降和颜色畸变;最后在以上改进的基础上进一步调整网络结构构建FastRetinexFLAformer,以达到更快的暗光图像处理速度。研究表明,改进后的RetinexFLAformer能有效提高TEDS图片的暗光增强效果,和其他算法对比,评价指标PSNR和SSIM分别提高0.55和0.023;FastRetinexFLAformer网络参数文件只有3.34 M,可达到当前主流方法相当的处理效果,且能有效提升暗光增强速度,达到TEDS系统的实时性需求。研究成果可有效提高TEDS系统的图片质量,提高损伤识别和标注的精准度,提升工作人员的效率,更好地保障铁路的安全运行。 展开更多
关键词 动车组运行故障图像检测系统 暗光增强 Retinexformer 线性聚焦多头自注意力 空间一致性损失
下载PDF
无监督学习三元组用于视频行人重识别研究
2
作者 蔡江琳 韩华 +2 位作者 王春媛 潘欣宇 芮行江 《智能计算机与应用》 2022年第11期18-25,共8页
在智能交通中,对于目前产生的海量视频通过人工来标记行人图像不切实际,使无监督学习得到更多的关注。针对在无监督学习数据中缺少详细的身份信息,无法知晓目标图像对应的正负样本问题,提出一种无监督学习三元组用于视频行人重识别研究... 在智能交通中,对于目前产生的海量视频通过人工来标记行人图像不切实际,使无监督学习得到更多的关注。针对在无监督学习数据中缺少详细的身份信息,无法知晓目标图像对应的正负样本问题,提出一种无监督学习三元组用于视频行人重识别研究的方法。该方法从无标签的数据集中挖掘三元组、即目标图像,与目标图像身份相同的轨迹和与目标图像身份不同的轨迹。首先根据单相机内轨迹的时空一致性,即构成轨迹的任意帧图像具有相同的身份,将行人轨迹特征表示成图像特征均值后,通过计算rank-1轨迹作为判断三元组的条件,用于设计特殊的三元组损失函数。并根据特征距离大小分配样本权重,着重学习困难样本,使模型动态调整正、负样本对之间的距离,加速模型的收敛速率,降低过拟合风险。然后通过计算跨相机rank-1,合并高度关联的轨迹作为跨相机三元组的锚样本用于损失计算。最后联合单相机和跨相机的损失评估模型。经过实验证明,该方法在PRID2011、iLIDS-VID和MARS上的结果都表明了该模型的有效性和可靠性。 展开更多
关键词 无监督学习 行人轨迹 关联排序 时空一致性 三元组损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部