针对分类问题,本文提出了稀疏组Lasso支持向量机方法(Sparse group lasso SVM,SGLSVM),即在SVM模型的损失函数中引入SGL惩罚函数,能同时进行组间变量和组内变量的筛选。由于SGL-SVM的目标函数求解比较复杂,本文又提出了一种快速的双层...针对分类问题,本文提出了稀疏组Lasso支持向量机方法(Sparse group lasso SVM,SGLSVM),即在SVM模型的损失函数中引入SGL惩罚函数,能同时进行组间变量和组内变量的筛选。由于SGL-SVM的目标函数求解比较复杂,本文又提出了一种快速的双层坐标下降算法。通过模拟实验,发现SGL-SVM方法在预测效果和变量选择上均要优于其他方法,对于变量具有自然分组结构且组内是稀疏的数据,本文方法在提高变量选择效果的同时又能提高模型的预测精度。最后,本文将SGL-SVM方法应用到我国制造业上市公司财务困境预测中。展开更多
鲁棒性作为一种动态行为也是超网络领域的研究热点,对构建鲁棒网络具有重要的现实意义。尽管对超网络的研究越来越多,但对其动态研究相对较少,尤其是在神经影像领域。在现有的脑功能超网络研究中,大多是探究网络的静态拓扑属性,并没有...鲁棒性作为一种动态行为也是超网络领域的研究热点,对构建鲁棒网络具有重要的现实意义。尽管对超网络的研究越来越多,但对其动态研究相对较少,尤其是在神经影像领域。在现有的脑功能超网络研究中,大多是探究网络的静态拓扑属性,并没有相关研究对脑功能超网络的动力学特性——鲁棒性展开分析。针对这些问题,文中首先引入lasso,group lasso和sparse group lasso方法来求解稀疏线性回归模型以构建超网络;然后基于蓄意攻击中的节点度和节点介数攻击两种实验模型,利用全局效率和最大连通子图相对大小探究脑功能超网络在应对攻击时的节点失效网络的鲁棒性,最后通过实验进行对比分析,以探究更为稳定的网络。实验结果表明,在蓄意攻击模式下,group lasso和sparse group lasso方法构建的超网络的鲁棒性更强一些。同时,综合来看,group lasso方法构建的超网络最稳定。展开更多
文摘针对分类问题,本文提出了稀疏组Lasso支持向量机方法(Sparse group lasso SVM,SGLSVM),即在SVM模型的损失函数中引入SGL惩罚函数,能同时进行组间变量和组内变量的筛选。由于SGL-SVM的目标函数求解比较复杂,本文又提出了一种快速的双层坐标下降算法。通过模拟实验,发现SGL-SVM方法在预测效果和变量选择上均要优于其他方法,对于变量具有自然分组结构且组内是稀疏的数据,本文方法在提高变量选择效果的同时又能提高模型的预测精度。最后,本文将SGL-SVM方法应用到我国制造业上市公司财务困境预测中。
文摘鲁棒性作为一种动态行为也是超网络领域的研究热点,对构建鲁棒网络具有重要的现实意义。尽管对超网络的研究越来越多,但对其动态研究相对较少,尤其是在神经影像领域。在现有的脑功能超网络研究中,大多是探究网络的静态拓扑属性,并没有相关研究对脑功能超网络的动力学特性——鲁棒性展开分析。针对这些问题,文中首先引入lasso,group lasso和sparse group lasso方法来求解稀疏线性回归模型以构建超网络;然后基于蓄意攻击中的节点度和节点介数攻击两种实验模型,利用全局效率和最大连通子图相对大小探究脑功能超网络在应对攻击时的节点失效网络的鲁棒性,最后通过实验进行对比分析,以探究更为稳定的网络。实验结果表明,在蓄意攻击模式下,group lasso和sparse group lasso方法构建的超网络的鲁棒性更强一些。同时,综合来看,group lasso方法构建的超网络最稳定。