期刊文献+
共找到131篇文章
< 1 2 7 >
每页显示 20 50 100
基于压缩感知理论的苹果病害识别方法 被引量:19
1
作者 霍迎秋 唐晶磊 +1 位作者 尹秀珍 方勇 《农业机械学报》 EI CAS CSCD 北大核心 2013年第10期227-232,共6页
为实现自然场景下低分辨率苹果果实病害的智能识别,提出了一种基于压缩感知理论的苹果病害识别方法。以轮纹病、炭疽病和新轮纹病3种常见的苹果果实病害为研究对象,提取病斑的8个纹理特征参数组成训练特征矩阵。利用压缩感知理论,求解... 为实现自然场景下低分辨率苹果果实病害的智能识别,提出了一种基于压缩感知理论的苹果病害识别方法。以轮纹病、炭疽病和新轮纹病3种常见的苹果果实病害为研究对象,提取病斑的8个纹理特征参数组成训练特征矩阵。利用压缩感知理论,求解待测样本特征向量在特征矩阵上的稀疏表示系数向量,通过对系数向量的分析实现待测样本的分类。设计灰度关联分析和支持向量机识别模型与本文方法进行识别效果对比,平均正确识别率分别为86.67%、90%和90%。实验结果表明,基于压缩感知理论的识别方法能够对苹果病害进行有效识别。 展开更多
关键词 苹果病害 压缩感知 特征矩阵 稀疏表示 支持向量机
下载PDF
A stochastic gradient-based two-step sparse identification algorithm for multivariate ARX systems
2
作者 Yanxin Fu Wenxiao Zhao 《Control Theory and Technology》 EI CSCD 2024年第2期213-221,共9页
We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (... We consider the sparse identification of multivariate ARX systems, i.e., to recover the zero elements of the unknown parameter matrix. We propose a two-step algorithm, where in the first step the stochastic gradient (SG) algorithm is applied to obtain initial estimates of the unknown parameter matrix and in the second step an optimization criterion is introduced for the sparse identification of multivariate ARX systems. Under mild conditions, we prove that by minimizing the criterion function, the zero elements of the unknown parameter matrix can be recovered with a finite number of observations. The performance of the algorithm is testified through a simulation example. 展开更多
关键词 ARX system Stochastic gradient algorithm sparse identification support recovery Parameter estimation Strong consistency
原文传递
基于循环匹配追踪的稀疏重构时延估计算法 被引量:6
3
作者 崔维嘉 张鹏 巴斌 《电子与信息学报》 EI CSCD 北大核心 2019年第3期523-529,共7页
在单样本(SMV)、低信噪比条件下,稀疏重构方法可提升时延估计精度,但现有的重构算法在支撑集元素的选择中存在错选和漏选的情况,从而导致估计精度受限。针对上述问题,该文提出一种基于循环匹配追踪(LMP)的稀疏重构时延估计算法。该方法... 在单样本(SMV)、低信噪比条件下,稀疏重构方法可提升时延估计精度,但现有的重构算法在支撑集元素的选择中存在错选和漏选的情况,从而导致估计精度受限。针对上述问题,该文提出一种基于循环匹配追踪(LMP)的稀疏重构时延估计算法。该方法引入了"循环删除,匹配添加"的思想,有效提升了直达径的估计精度。算法首先建立信道冲激响应稀疏表示模型;然后在获得初始支撑集的前提下,先循环删除支撑集内的元素,再从支撑集补集中依据与当前残差内积值最大来匹配添加新元素,直至残差内积基本不变;最后利用时延值与稀疏支撑集的关系得到了时延的估计值。仿真结果表明,所提算法相比于传统稀疏重构时延估计算法具有更高的估计精度。同时基于USRP平台,利用实际信号对所提算法进行了有效性验证。 展开更多
关键词 时延估计 稀疏重构 循环匹配追踪 支撑集 USRP平台
下载PDF
A hybrid deep neural network based prediction of 300 MW coalfired boiler combustion operation condition 被引量:5
4
作者 HAN ZheZhe HUANG YiZhi +3 位作者 LI Jian ZHANG Biao HOSSAIN Md.Moinul XU ChuanLong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第10期2300-2311,共12页
In power generation industries,boilers are required to be operated under a range of different conditions to accommodate demands for fuel randomness and energy fluctuation.Reliable prediction of the combustion operatio... In power generation industries,boilers are required to be operated under a range of different conditions to accommodate demands for fuel randomness and energy fluctuation.Reliable prediction of the combustion operation condition is crucial for an in-depth understanding of boiler performance and maintaining high combustion efficiency.However,it is difficult to establish an accurate prediction model based on traditional data-driven methods,which requires prior expert knowledge and a large number of labeled data.To overcome these limitations,a novel prediction method for the combustion operation condition based on flame imaging and a hybrid deep neural network is proposed.The proposed hybrid model is a combination of convolutional sparse autoencoder(CSAE)and least support vector machine(LSSVM),i.e.,CSAE-LSSVM,where the convolutional sparse autoencoder with deep architectures is utilized to extract the essential features of flame image,and then essential features are input into the least support vector machine for operation condition prediction.A comprehensive investigation of optimal hyper-parameter and dropout technique is carried out to improve the performance of the CSAE-LSSVM.The effectiveness of the proposed model is evaluated by 300 MW tangential coal-fired boiler flame images.The prediction accuracy of the proposed hybrid model reaches 98.06%,and its prediction time is 3.06 ms/image.It is observed that the proposed model could present a superior performance in comparison to other existing neural network models. 展开更多
关键词 coal-fired power plant combustion operation condition prediction flame image convolutional sparse autoencoder least support vector machine
原文传递
用于图像重构的基于行间支撑集相似度的CoSaMP算法 被引量:4
5
作者 杜秀丽 顾斌斌 +2 位作者 胡兴 邱少明 陈波 《计算机科学》 CSCD 北大核心 2018年第4期306-311,共6页
压缩采样匹配追踪(CoSaMP)算法的性能受初始支撑集选择的制约,初始支撑集选择不准确不仅影响重构精度,还会降低重构速度。针对该问题,将图像在稀疏域的结构特性引入到CoSaMP算法中,提出了支撑集相似度的概念;利用数字图像相邻行之间原... 压缩采样匹配追踪(CoSaMP)算法的性能受初始支撑集选择的制约,初始支撑集选择不准确不仅影响重构精度,还会降低重构速度。针对该问题,将图像在稀疏域的结构特性引入到CoSaMP算法中,提出了支撑集相似度的概念;利用数字图像相邻行之间原子支撑集的相似性,提出了基于行间支撑集相似度的CoSaMP算法。实验结果表明,在同等采样率的条件下,与传统的CoSaMP算法相比,所提算法在不增加算法时间复杂度的同时提高了重构质量,峰值信噪比提高了0.6~2.5dB。 展开更多
关键词 压缩感知 贪婪算法 压缩采样匹配追踪(CoSaMP) 稀疏支撑集 相似度
下载PDF
Iterative subspace matching pursuit for joint sparse recovery
6
作者 Shu Feng Zhang Linghua Ding Yin 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第2期26-35,共10页
Joint sparse recovery(JSR)in compressed sensing(CS)is to simultaneously recover multiple jointly sparse vectors from their incomplete measurements that are conducted based on a common sensing matrix.In this study,the ... Joint sparse recovery(JSR)in compressed sensing(CS)is to simultaneously recover multiple jointly sparse vectors from their incomplete measurements that are conducted based on a common sensing matrix.In this study,the focus is placed on the rank defective case where the number of measurements is limited or the signals are significantly correlated with each other.First,an iterative atom refinement process is adopted to estimate part of the atoms of the support set.Subsequently,the above atoms along with the measurements are used to estimate the remaining atoms.The estimation criteria for atoms are based on the principle of minimum subspace distance.Extensive numerical experiments were performed in noiseless and noisy scenarios,and results reveal that iterative subspace matching pursuit(ISMP)outperforms other existing algorithms for JSR. 展开更多
关键词 joint sparse recovery(JSR) multiple measurement vector(MMV) support set estimation compressed sensing(CS)
原文传递
基于稀疏支撑集先验的压缩感知图像序列重建算法 被引量:3
7
作者 李星秀 韦志辉 肖亮 《南京理工大学学报》 EI CAS CSCD 北大核心 2012年第6期973-978,共6页
针对现有压缩感知图像序列重建算法重建精度不高、模型参数设置较多的问题,提出了一种结合稀疏支撑集先验和残差补偿的算法。在已知前一帧图像重建结果的基础上,通过求解1个最小化加权l1范数问题得到当前帧图像的初始估计。通过对估计... 针对现有压缩感知图像序列重建算法重建精度不高、模型参数设置较多的问题,提出了一种结合稀疏支撑集先验和残差补偿的算法。在已知前一帧图像重建结果的基础上,通过求解1个最小化加权l1范数问题得到当前帧图像的初始估计。通过对估计残差进行压缩感知重建并对初始估计加以补偿,得到当前帧图像的最终重建结果。与其他同类算法相比,该算法减少了阈值参数的设置。实验结果表明,在相同的测量值数目下,该算法重建图像的相对误差、峰值信噪比和结构相似度指标均优于同类比较算法。 展开更多
关键词 稀疏支撑集 压缩感知 图像序列 残差补偿
下载PDF
稀疏最小二乘支持向量机及其应用 被引量:2
8
作者 衷路生 陈立勇 《中国科技论文》 CAS 北大核心 2014年第7期779-783,共5页
提出基于特征向量选择(feature vector selection,FVS)的稀疏最小二乘支持向量机(sparse least squares support vector machine,SLS-SVM)模型,解决最小二乘支持向量机(least squares support vector machine,LS-SVM)稀疏化问题。采用FV... 提出基于特征向量选择(feature vector selection,FVS)的稀疏最小二乘支持向量机(sparse least squares support vector machine,SLS-SVM)模型,解决最小二乘支持向量机(least squares support vector machine,LS-SVM)稀疏化问题。采用FVS在特征空间构建特征向量子集,对训练样本进行稀疏线性重构;将稀疏化的特征向量作为支持向量,从而实现对LS-SVM稀疏化建模。将SLS-SVM模型进行弓网系统的仿真对比实验,结果表明SLS-SVM模型在取得高预报精度的同时,可实现支持向量的高度稀疏化,从而加快模型预报速度。 展开更多
关键词 特征向量 稀疏 支持向量 弓网系统
下载PDF
Adaptive Data-Driven Wideband Compressive Spectrum Sensing for Cognitive Radio Networks
9
作者 Mohsen Ghadyani Ali Shahzadi 《Journal of Communications and Information Networks》 2018年第2期75-83,共9页
This paper presents a novel adaptive wide-band compressed spectrum sensing scheme for cognitive radio(CR)networks.Compared to the traditional CSS-based CR scenarios,the proposed approach reconstructs neither the recei... This paper presents a novel adaptive wide-band compressed spectrum sensing scheme for cognitive radio(CR)networks.Compared to the traditional CSS-based CR scenarios,the proposed approach reconstructs neither the received signal nor its spectrum during the compressed sensing procedure.On the contrary,a precise estimation of wide spectrum support is recovered with a fewer number of compressed measurements.Then,the spectrum occupancy is determined directly from the reconstructed support vector.To carry out this process,a data-driven methodology is utilized to obtain the mini-mum number of necessary samples required for support reconstruction,and a closed-form expression is obtained that optimally estimates the number of desired samples as a function of the sparsity level and number of channels.Following this phase,an adjustable sequential framework is developed where the first step predicts the optimal number of compressed measurements and the second step recovers the sparse support and makes sensing decision.Theoretical analysis and numerical simulations demonstrate the improvement achieved with the proposed algorithm to significantly reduce both sampling costs and average sensing time without any deterioration in detection performance.Furthermore,the remainder of the sensing time can be employed by secondary users for data transmission,thus leading to the enhancement of the total throughput of the CR network. 展开更多
关键词 saving in the sampling resources sparse support estimation spectrum occupancy throughput enhancement wideband spectrum sensing
原文传递
扩展稀疏表示稳健HRRP目标特征提取方法
10
作者 李龙 《现代导航》 2020年第3期211-217,共7页
为提高低信噪比下高分辨一维距离像目标识别性能,提出扩展稀疏表示的噪声稳健目标特征提取方法。本方法通过对稀疏表示的扩展,实现对目标高分辨一维距离像局部特征与全局特征的提取。其中,在训练阶段利用支持向量理论与字典学习原理,对... 为提高低信噪比下高分辨一维距离像目标识别性能,提出扩展稀疏表示的噪声稳健目标特征提取方法。本方法通过对稀疏表示的扩展,实现对目标高分辨一维距离像局部特征与全局特征的提取。其中,在训练阶段利用支持向量理论与字典学习原理,对特征提取字典进行优化提高特征向量的可分性。在测试阶段,利用因子分析模型匹配方法对去噪声字典进行优化,从而实现对噪声的有效抑制,保证了目标识别系统的噪声稳健性。利用实测数据对本方法性能进行测试,结果表明本方法可在低信噪比条件下有效地恢复目标高分辨一维距离像,并实现较高的识别正确率。 展开更多
关键词 雷达 目标识别 高分辨一维距离像 特征提取 噪声稳健 稀疏表示 字典学习 支撑向量
下载PDF
基于多特征融合和稀疏表示的农业害虫图像识别方法 被引量:28
11
作者 张永玲 姜梦洲 +3 位作者 俞佩仕 姚青 杨保军 唐健 《中国农业科学》 CAS CSCD 北大核心 2018年第11期2084-2093,共10页
【目的】在农业害虫测报中,常常需要从大量的昆虫中识别出几种重要的测报害虫。目前基于图像的农业害虫识别研究,大部分是在有限种类有限样本量基础上进行的农业害虫识别。本研究为了从大量的水稻昆虫图像中识别出9种水稻测报害虫,尝试... 【目的】在农业害虫测报中,常常需要从大量的昆虫中识别出几种重要的测报害虫。目前基于图像的农业害虫识别研究,大部分是在有限种类有限样本量基础上进行的农业害虫识别。本研究为了从大量的水稻昆虫图像中识别出9种水稻测报害虫,尝试提出了一种基于多特征融合和稀疏表示的农业害虫图像识别方法。【方法】首先,为了获得最优的农业害虫识别模型,将所有图像进行旋转使昆虫头朝上,按照1﹕2长宽比裁剪图像,使昆虫居中并占据图像大部分区域,将图像进行等比例缩放至统一尺寸48×96像素。提取所有昆虫的HSV颜色特征、局部特征中的HOG特征、Gabor特征和LBP特征。然后,利用单一特征和融合特征分别对训练样本构建过完备字典,字典中的每一个列向量表示一个训练样本,且满足同一类训练样本均在同一个子空间中;应用过完备字典对测试图像进行多特征稀疏表示,通过求解l1范数意义下的优化问题获取稀疏解,使得除测试样本所在的类别外其他的训练样本的系数都是零或接近零的数值。最后,计算稀疏集中指数阈值,用于判断测试样本的有效性,如果测试样本的稀疏集中指数大于该阈值,则认为最小残差所对应的类别即为测试样本的类别,否则认为该测试样本为非测报昆虫。同时,利用相同的特征和训练样本训练SVM分类器对测试样本进行测试,与稀疏表示害虫识别模型进行比较。【结果】利用单一特征训练的稀疏表示害虫识别模型中,基于HOG特征的稀疏表示识别模型获得了9种测报害虫较高的识别率和较低的误检率,分别为87.0%和7.5%;利用颜色特征分别与3种局部特征进行结合获得的稀疏表示识别模型,测试结果表明,基于颜色和HOG特征的稀疏表示识别模型获得了最高的识别率和最低的误检率,分别为90.1%和5.2%;将颜色、HOG和Gabor 3个特征结合获得的稀疏表 展开更多
关键词 农业测报害虫 特征融合 稀疏表示 识别模型 支持向量机
下载PDF
相关向量机及其在变压器故障诊断中的应用 被引量:22
12
作者 尹金良 朱永利 俞国勤 《电力自动化设备》 EI CSCD 北大核心 2012年第8期130-134,共5页
分析并用典型数据分类算例验证相关向量机(RVM)在分类性能方面优于支持向量机(SVM),在此基础上以标准化的变压器主要特征气体含量为输入量,采用二叉树的分类方法建立基于RVM的变压器故障诊断模型。实例分析表明,同基于SVM的故障诊断方... 分析并用典型数据分类算例验证相关向量机(RVM)在分类性能方面优于支持向量机(SVM),在此基础上以标准化的变压器主要特征气体含量为输入量,采用二叉树的分类方法建立基于RVM的变压器故障诊断模型。实例分析表明,同基于SVM的故障诊断方法相比,该方法可以取得与其相当甚至更优的故障诊断正确率,相关向量个数明显少于支持向量个数,诊断速度显著提高。 展开更多
关键词 相关向量机 稀疏贝叶斯 支持向量机 核函数 变压器 故障诊断 分类
下载PDF
基于高光谱和深度迁移学习的柑橘叶片钾含量反演 被引量:21
13
作者 岳学军 凌康杰 +3 位作者 王林惠 岑振钊 卢杨 刘永鑫 《农业机械学报》 EI CAS CSCD 北大核心 2019年第3期186-195,共10页
针对传统柑橘叶片钾含量检测方法耗时费力、操作繁琐且损伤叶片等弊端,引入高光谱信息探索柑橘叶片钾含量快速无损检测与预测模型,选用ASD Field Spec 3光谱仪采集柑橘4个重要物候期(萌芽期、稳果期、壮果促梢期和采果期)的叶片反射光谱... 针对传统柑橘叶片钾含量检测方法耗时费力、操作繁琐且损伤叶片等弊端,引入高光谱信息探索柑橘叶片钾含量快速无损检测与预测模型,选用ASD Field Spec 3光谱仪采集柑橘4个重要物候期(萌芽期、稳果期、壮果促梢期和采果期)的叶片反射光谱,同步采用火焰光度法测定叶片的钾含量;先用正交试验确定小波去噪的最佳去噪参数组合,再进行不同光谱形式变换,对不同物候期光谱进行基于堆栈稀疏编码机-深度学习网络(Stacked sparse autoencoder-deep learning networks,SSAE-DLNs)的特征提取迁移和融合多种特征,对比支持向量机回归、偏最小二乘法回归、广义神经网络、逐步多元线性回归等多种诊断模型,结果表明,模型SSAE-DLNs基于一阶微分光谱特征建立全生长期钾含量预测模型的性能最优,其校正集和验证集决定系数分别为0. 898 8、0. 877 1,均方根误差分别为0. 544 3、0. 552 8。试验表明,深度迁移学习网络可对柑橘叶片钾含量进行精确预测,为高光谱检测技术用于柑橘树长势监测和营养诊断提供了参考。 展开更多
关键词 柑橘叶片 钾含量 深度迁移学习 堆栈稀疏自动编码机 高光谱 支持向量回归
下载PDF
稀疏贝叶斯模型与相关向量机学习研究 被引量:21
14
作者 杨国鹏 周欣 余旭初 《计算机科学》 CSCD 北大核心 2010年第7期225-228,共4页
虽然支持向量机在模式识别的相关领域得到了广泛应用,但它自身固有许多不足之处。相关向量机是在稀疏贝叶斯框架下提出的稀疏模型,模型没有规则化系数,核函数不要求满足Mercer条件。相关向量机不仅具备良好的泛化能力,而且还能够得到具... 虽然支持向量机在模式识别的相关领域得到了广泛应用,但它自身固有许多不足之处。相关向量机是在稀疏贝叶斯框架下提出的稀疏模型,模型没有规则化系数,核函数不要求满足Mercer条件。相关向量机不仅具备良好的泛化能力,而且还能够得到具有统计意义的预测结果。首先介绍了稀疏贝叶斯回归和分类模型,通过参数推断过程,将相关向量机学习转化为最大化边缘似然函数估计,并分析了3种估计方法,给出了快速序列稀疏贝叶斯学习算法流程。 展开更多
关键词 稀疏贝叶斯模型 相关向量机 支持向量机
下载PDF
基于原子稀疏分解和支持向量机的风电功率实时预测研究 被引量:20
15
作者 杨茂 刘慧宇 +1 位作者 孙勇 李宝聚 《东北电力大学学报》 2020年第3期1-7,共7页
准确的超短期风电功率实时预测是实现风能大规模调度的有效手段.针对风电场风电功率实时预测精度低的问题,文中提出了一种基于原子稀疏分解(ASD)理论和支持向量机的预测方法.该方法利用原子稀疏分解算法对风电功率时间序列进行分解,然... 准确的超短期风电功率实时预测是实现风能大规模调度的有效手段.针对风电场风电功率实时预测精度低的问题,文中提出了一种基于原子稀疏分解(ASD)理论和支持向量机的预测方法.该方法利用原子稀疏分解算法对风电功率时间序列进行分解,然后对得到的原子分量和残差分量分别进行自预测和支持向量机预测,最后将预测值组合叠加,从而得到最终的预测值.以某风电场的实测风电功率数据为例,进行不同时段的实时预测.结果表明,该方法可以显著提高风电功率的预测精度. 展开更多
关键词 风电功率 实时预测 原子稀疏分解 支持向量机 组合预测
下载PDF
基于稀疏自动编码器神经网络的负荷曲线分类方法 被引量:20
16
作者 林顺富 顾乡 +2 位作者 汤继开 李东东 符杨 《电网技术》 EI CSCD 北大核心 2020年第9期3508-3515,共8页
随着电力市场精细化发展以及电力大数据的广泛应用,深度探索电力用户用电行为特性具有重要意义,因此该文提出一种结合有监督和无监督算法的电力负荷曲线分类方法。首先,基于距离与曲线形态的双尺度相似性度量,采用无监督优化谱聚类算法... 随着电力市场精细化发展以及电力大数据的广泛应用,深度探索电力用户用电行为特性具有重要意义,因此该文提出一种结合有监督和无监督算法的电力负荷曲线分类方法。首先,基于距离与曲线形态的双尺度相似性度量,采用无监督优化谱聚类算法获得负荷曲线精准标签数据;其次,采用稀疏自动编码器神经网络学习大规模待分类负荷曲线的内在特征,得到隐藏层权值矩阵即神经网络的优化初始参数;最后,基于已获得的标签数据,训练支持向量机神经网络分类器,实现对大规模待分类负荷曲线的有监督分类。基于爱尔兰负荷数据,算例表明本文提出的分类方法在DBI指数、轮廓系数、分类有效性以及计算速度等方面具有更好的性能。 展开更多
关键词 负荷曲线分类 稀疏自动编码器 双尺度谱聚类 支持向量机
下载PDF
基于GA-LSSVR模型的路网短时交通流预测研究 被引量:19
17
作者 陈小波 刘祥 +3 位作者 韦中杰 梁军 蔡英凤 陈龙 《交通运输系统工程与信息》 EI CSCD 北大核心 2017年第1期60-66,81,共8页
目前,很多短时交通流预测方法仅利用某一路段历史数据的时间相关性或者道路上下游路段的时空相关性进行交通流预测,未充分考虑路网所有路段之间的时空相关性.提出了一种基于稀疏混合遗传算法优化的最小二乘支持向量回归(LSSVR)模型,并... 目前,很多短时交通流预测方法仅利用某一路段历史数据的时间相关性或者道路上下游路段的时空相关性进行交通流预测,未充分考虑路网所有路段之间的时空相关性.提出了一种基于稀疏混合遗传算法优化的最小二乘支持向量回归(LSSVR)模型,并应用于路网短时交通流预测.该预测模型不仅可以自动优化LSSVR模型参数,而且可以从高维路网交通流数据中选择有助于交通流预测的变量子集.实验结果表明,与LSSVR模型相比,所提方法具有更好的预测能力;而且,少量时空变量被选择出来构建预测模型,极大减少了信息冗余,改进了模型可解释性. 展开更多
关键词 智能交通 变量选择 稀疏混合遗传算法 短时交通流预测 最小二乘支持向量回归
下载PDF
基于深度学习特征提取的网络入侵检测方法 被引量:18
18
作者 宋勇 侯冰楠 蔡志平 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第2期115-120,共6页
针对在构建深度学习模型过程中,神经网络隐藏层的层数和每层神经元节点数主要通过人工专家的主观经验设置,深度学习模型智能化不够、适应性不强的问题,提出了一种应用于网络入侵检测的自适应、智能化的深度学习特征提取方法。该方法采... 针对在构建深度学习模型过程中,神经网络隐藏层的层数和每层神经元节点数主要通过人工专家的主观经验设置,深度学习模型智能化不够、适应性不强的问题,提出了一种应用于网络入侵检测的自适应、智能化的深度学习特征提取方法。该方法采用逐层贪婪训练的策略,通过改进稀疏自编码神经网络训练的方式,形成了一个自适应、智能化的特征提取神经网络。最后利用基于支持向量机的多类分类器,形成了一种基于深度学习特征提取的网络入侵检测系统。实验表明:与基于自编码网络的支持向量机入侵检测模型(AN-SVM)和基于核主成分分析与遗传算法相结合的支持向量机模型(KPCA-GA-SVM)入侵检测方法相比,准确率平均提高了5.01%,误报率平均降低了6.24%,检测时间平均降低了16%,说明了该方法优于其他类似方法。 展开更多
关键词 深度学习 稀疏自编码 抑制与激励 特征提取 逐层贪婪训练 支持向量机
原文传递
基于稠密光流轨迹和稀疏编码算法的行为识别方法 被引量:17
19
作者 赵晓健 曾晓勤 《计算机应用》 CSCD 北大核心 2016年第1期181-187,共7页
针对现有行为特征提取方法识别率低的问题,提出了一种融合稠密光流轨迹和稀疏编码框架的无监督行为特征提取方法(DOF-SC)。首先,在稠密光流(DOF)轨迹提取的基础上,对以轨迹为中心的原始图像块进行采样作为轨迹的原始特征;其次,对轨迹原... 针对现有行为特征提取方法识别率低的问题,提出了一种融合稠密光流轨迹和稀疏编码框架的无监督行为特征提取方法(DOF-SC)。首先,在稠密光流(DOF)轨迹提取的基础上,对以轨迹为中心的原始图像块进行采样作为轨迹的原始特征;其次,对轨迹原始特征基于稀疏编码框架训练稀疏字典,得到轨迹的稀疏特征表示,利用词袋(BF)模型对稀疏特征聚类得到轨迹的码书,再根据码书对每个动作中出现的所有轨迹所属的码书类别进行投票,统计该动作中每个码书出现的次数,得到行为特征;最后,对行为特征利用基于直方图交叉核函数的支持向量机(SVM)进行训练得到行为识别模型,再利用该模型对行为进行分类预测,得到最终行为识别的结果。在对轨迹采样10%的情况下,DOF-SC算法得到的行为识别准确率在KTH数据库上高出采用运动边界直方图(MBH)作为特征的行为识别准确率的0.9%,在You Tube数据库上高出MBH作为特征的行为识别准确率的1.2%。实验数据表明了所提方法对行为识别的有效性。 展开更多
关键词 行为识别 稀疏编码 稠密光流 词袋模型 支持向量机
下载PDF
基于VSRP与β-GWO-SVM的变压器故障辨识方法 被引量:17
20
作者 谢国民 倪乐水 曹媛 《高电压技术》 EI CAS CSCD 北大核心 2021年第10期3635-3641,共7页
针对变压器故障诊断准确率低的问题,提出一种基于VSRP与β-GWO-SVM的变压器故障诊断方法。首先,采用非常稀疏随机投影(very sparse random projection,VSRP)对原始数据进行维数约减,消除变量信息之间的冗余特征;其次,用β-混沌序列优化... 针对变压器故障诊断准确率低的问题,提出一种基于VSRP与β-GWO-SVM的变压器故障诊断方法。首先,采用非常稀疏随机投影(very sparse random projection,VSRP)对原始数据进行维数约减,消除变量信息之间的冗余特征;其次,用β-混沌序列优化的灰狼算法(β-chaotic map enabled grey wolf optimizer,β-GWO)动态寻优支持向量机(support vector machine,SVM)的核参数与惩罚因子,获取VSRP与β-GWO-SVM相结合的综合故障诊断模型;最后,将实际变压器故障数据输入诊断模型,并与传统灰狼优化支持向量机模型(GWO-SVM)、粒子群优化支持向量机模型(particle swarm optimization-SVM,PSO-SVM)进行对比验证,诊断精度分别为91.87%、82.13%、75.10%,结果表明该文所提方法能够有效地提升变压器故障诊断性能。 展开更多
关键词 变压器 故障诊断 非常稀疏随机投影 改进灰狼算法 支持向量机
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部