期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合transformer多尺度实例交互的稀疏集目标检测
1
作者
阚亚亚
张孙杰
+1 位作者
熊娟
祖奕
《应用科学学报》
CAS
CSCD
北大核心
2023年第5期777-788,共12页
为改进稀疏集目标检测方法存在的特征图缺乏空间细节信息、目标特征没有做到全局上下文实例交互、全局语义信息没有得到充分学习等问题,设计了一种结合自适应特征增强和实例特征交互的稀疏集目标检测算法。自适应特征增强模块在特征提...
为改进稀疏集目标检测方法存在的特征图缺乏空间细节信息、目标特征没有做到全局上下文实例交互、全局语义信息没有得到充分学习等问题,设计了一种结合自适应特征增强和实例特征交互的稀疏集目标检测算法。自适应特征增强模块在特征提取过程中利用不同尺度的池化和卷积来丰富高级语义信息,减小低级语义信息背景噪声的干扰,降低目标错检率和漏检率。实例特征交互模块在边界框回归设计中结合transformer的多层注意力,并融合通道注意力和动态卷积网络对建议框的通道信息进行增强,改善了目标的边缘信息,提高了网络的实例特征交互效率。最后在COCO2017数据集与原始网络进行实验对比,平均精度提升了4.2%,其中在大目标上提升了4.6%,在PASCAL VOC数据集上提升了2.7%。
展开更多
关键词
稀疏集目标检测
多尺度特征
实例特征交互
TRANSFORMER
下载PDF
职称材料
题名
结合transformer多尺度实例交互的稀疏集目标检测
1
作者
阚亚亚
张孙杰
熊娟
祖奕
机构
上海理工大学光电信息与计算机工程学院
出处
《应用科学学报》
CAS
CSCD
北大核心
2023年第5期777-788,共12页
基金
上海市晨光学者基金(No.18CG52)资助。
文摘
为改进稀疏集目标检测方法存在的特征图缺乏空间细节信息、目标特征没有做到全局上下文实例交互、全局语义信息没有得到充分学习等问题,设计了一种结合自适应特征增强和实例特征交互的稀疏集目标检测算法。自适应特征增强模块在特征提取过程中利用不同尺度的池化和卷积来丰富高级语义信息,减小低级语义信息背景噪声的干扰,降低目标错检率和漏检率。实例特征交互模块在边界框回归设计中结合transformer的多层注意力,并融合通道注意力和动态卷积网络对建议框的通道信息进行增强,改善了目标的边缘信息,提高了网络的实例特征交互效率。最后在COCO2017数据集与原始网络进行实验对比,平均精度提升了4.2%,其中在大目标上提升了4.6%,在PASCAL VOC数据集上提升了2.7%。
关键词
稀疏集目标检测
多尺度特征
实例特征交互
TRANSFORMER
Keywords
sparse
set
object
detection
multi-scale
feature
instance
feature
interaction
transformer
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合transformer多尺度实例交互的稀疏集目标检测
阚亚亚
张孙杰
熊娟
祖奕
《应用科学学报》
CAS
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部