期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Splitting Primal-dual Proximity Algorithm for Solving Composite Optimization Problems 被引量:3
1
作者 Yu Chao TANG Chuan Xi ZHU +1 位作者 Meng WEN Ji Gen PENG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第6期868-886,共19页
Our work considers the optimization of the sum of a non-smooth convex function and a finite family of composite convex functions, each one of which is composed of a convex function and a bounded linear operator. This ... Our work considers the optimization of the sum of a non-smooth convex function and a finite family of composite convex functions, each one of which is composed of a convex function and a bounded linear operator. This type of problem is associated with many interesting challenges encoun- tered in the image restoration and image reconstruction fields. We developed a splitting primal-dual proximity algorithm to solve this problem. Furthermore, we propose a preconditioned method~ of which the iterative parameters are obtained without the need to know some particular operator norm in advance. Theoretical convergence theorems are presented. We then apply the proposed methods to solve a total variation regularization model, in which the L2 data error function is added to the L1 data error function. The main advantageous feature of this model is its capability to combine different loss functions. The numerical results obtained for computed tomography (CT) image recon- struction demonstrated the ability of the proposed algorithm to reconstruct an image with few and sparse projection views while maintaining the image quality. 展开更多
关键词 sparse optimization proximity operator saddle-point problem CT image reconstruction
原文传递
解复杂多峰优化问题的双引导机制灰狼算法 被引量:2
2
作者 孟团兴 覃华 《计算机工程与设计》 北大核心 2023年第5期1378-1384,共7页
为解决复杂多峰优化问题高质量解难以获取的难题,分析灰狼算法解此类问题时易陷入局部最优的原因,提出一种解复杂多峰优化问题的双引导机制灰狼算法。对于当前适应度较好的个体,沿用传统灰狼算法引导机制探测个体,保留其局部搜索能力强... 为解决复杂多峰优化问题高质量解难以获取的难题,分析灰狼算法解此类问题时易陷入局部最优的原因,提出一种解复杂多峰优化问题的双引导机制灰狼算法。对于当前适应度较好的个体,沿用传统灰狼算法引导机制探测个体,保留其局部搜索能力强的优点;对于适应度较差的个体,通过动态选择稀疏点算子或偏向差分变异算子的引导机制探索解空间新区域,增强灰狼算法跳出局部最优的能力。实例仿真计算结果表明,该算法所获计算精度优于相比较的其它算法。特别是Wilcoxon假设检验结果显示,其分别以96.67%、97.43%、93.15%的显著性优于传统灰狼算法、粒子群-灰狼混合算法及选择性反向灰狼算法。 展开更多
关键词 多峰优化问题 灰狼算法 双引导机制 稀疏度 稀疏点算子 偏向角 偏向差分变异算子
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部