期刊文献+
共找到278篇文章
< 1 2 14 >
每页显示 20 50 100
矩阵补全模型及其算法研究综述 被引量:21
1
作者 陈蕾 陈松灿 《软件学报》 EI CSCD 北大核心 2017年第6期1547-1564,共18页
近年来,随着压缩感知技术在信号处理领域的巨大成功,由其衍生而来的矩阵补全技术也日益成为机器学习领域的研究热点,诸多研究者针对矩阵补全问题展开了大量卓有成效的研究.为了更好地把握矩阵补全技术的发展规律,促进矩阵补全理论与工... 近年来,随着压缩感知技术在信号处理领域的巨大成功,由其衍生而来的矩阵补全技术也日益成为机器学习领域的研究热点,诸多研究者针对矩阵补全问题展开了大量卓有成效的研究.为了更好地把握矩阵补全技术的发展规律,促进矩阵补全理论与工程应用相结合,针对矩阵补全模型及其算法进行了综述.首先,对矩阵补全技术进行溯源,介绍了从压缩感知到矩阵补全的自然演化历程,指出压缩感知理论的发展为矩阵补全理论的形成奠定了基础;其次,从非凸非光滑秩函数松弛的角度将现有矩阵补全模型进行分类,旨在为面向具体应用的矩阵补全问题建模提供思路;然后综述了适用于矩阵补全模型求解的代表性优化算法,其目的在于从本质上理解各种矩阵补全模型优化技巧,从而有利于面向应用问题的矩阵补全新模型求解;最后分析了矩阵补全模型及其算法目前存在的问题,提出了可能的解决思路,并对未来的研究方向进行了展望. 展开更多
关键词 稀疏学习 矩阵补全 压缩感知 矩阵分解 随机优化
下载PDF
使用Nesterov步长策略投影次梯度方法的个体收敛性 被引量:16
2
作者 陶蔚 潘志松 +1 位作者 储德军 陶卿 《计算机学报》 EI CSCD 北大核心 2018年第1期164-176,共13页
很多机器学习问题都可以最终转换为优化问题来进行求解,凸优化算法已经被成功用于各种机器学习优化问题中,而在优化算法的研究中是否能获得最优的收敛速率是一个最基本问题.此外,稀疏性是稀疏学习问题中关注的另一个目标.目前,人们已经... 很多机器学习问题都可以最终转换为优化问题来进行求解,凸优化算法已经被成功用于各种机器学习优化问题中,而在优化算法的研究中是否能获得最优的收敛速率是一个最基本问题.此外,稀疏性是稀疏学习问题中关注的另一个目标.目前,人们已经提出了大量的随机优化方法求解大规模机器学习优化问题,但大部分的研究只是针对平均输出方式获得了最优收敛速率.个体输出方式显然比平均方式的输出具有更好的稀疏性,但使个体收敛速率获得最优具有一定的难度,人们已经将强凸情形下的最优个体收敛性作为公开问题进行广泛研究.对于光滑目标函数的优化问题,著名学者Nesterov提出了一种步长策略,使得梯度方法的收敛速率获得了数量级形式的加速,并且获得了最优的个体收敛速率.目前,Nesterov加速算法已经应用于各种具有光滑损失函数机器学习优化问题中,研究者基于该加速策略提出了大量的随机优化算法.能否将这种技巧推广至非光滑情形获得最优的个体收敛速率显然是有意义的问题.文中考虑在非光滑优化算法中引入这种步长策略.特别地,我们聚焦经典的一阶梯度方法,提出了一种嵌入加速算法步长策略的投影次梯度算法,证明了这种算法在求解非光滑损失函数学习问题时具有最优的个体收敛速率.这是比标准投影次梯度方法只有在平均输出方式下才具有最优收敛速率更强的结论,也是一阶梯度方法在个体最优收敛速率方面比较接近于大家期待的研究成果.与平均方式输出以及线性插值的投影次梯度方法相比,该文所提方法的梯度运算在插值策略之后,因此在求解l1范数约束的hinge损失函数学习问题时具有更好的稀疏性.人工数据集上的实验验证了所提方法的正确性,基准数据集上验证了该方法在保持稀疏性方面具有良好的性能. 展开更多
关键词 机器学习 非光滑损失函数问题 投影次梯度方法 Nesterov步长策略 个体收敛速率 稀疏学习
下载PDF
基于稀疏学习的kNN分类 被引量:8
3
作者 宗鸣 龚永红 +2 位作者 文国秋 程德波 朱永华 《广西师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期39-45,共7页
在kNN算法分类问题中,k的取值一般是固定的,另外,训练样本中可能存在的噪声能影响分类结果。针对以上存在的两个问题,本文提出一种新的基于稀疏学习的kNN分类方法。本文用训练样本重构测试样本,其中,l_1-范数导致的稀疏性用来对每个测... 在kNN算法分类问题中,k的取值一般是固定的,另外,训练样本中可能存在的噪声能影响分类结果。针对以上存在的两个问题,本文提出一种新的基于稀疏学习的kNN分类方法。本文用训练样本重构测试样本,其中,l_1-范数导致的稀疏性用来对每个测试样本用不同数目的训练样本进行分类,这解决了kNN算法固定k值问题;l_(21)-范数产生的整行稀疏用来去除噪声样本。在UCI数据集上进行实验,本文使用的新算法比原来的kNN分类算法能取得更好的分类效果。 展开更多
关键词 稀疏学习 重构 l1-范数 l21-范数 噪声样本
下载PDF
基于静-动态特性协同感知的复杂工业过程运行状态评价 被引量:3
4
作者 褚菲 许杨 +3 位作者 尚超 王福利 高福荣 马小平 《自动化学报》 EI CAS CSCD 北大核心 2023年第8期1621-1634,共14页
针对当前过程监测和运行状态评价方法等对工况信息感知不全面、漏报和误报现象严重等问题,在深入研究工业现场数据静-动态特性协同感知方法的基础上,提出关键性能指标(Key performance indicators, KPI)驱动的慢特征分析(Slow feature a... 针对当前过程监测和运行状态评价方法等对工况信息感知不全面、漏报和误报现象严重等问题,在深入研究工业现场数据静-动态特性协同感知方法的基础上,提出关键性能指标(Key performance indicators, KPI)驱动的慢特征分析(Slow feature analysis, SFA)算法.将关键性能指标信息融入到慢特征分析中,协同感知复杂工业过程的静-动态特性变化,并进一步通过计算潜变量之间的相似度及其一阶差分间的相似度实现对过程稳态和过渡的评价.在此基础上,建立基于静-动态特性协同感知的过程运行状态评价统一框架.针对非优状态,提出基于稀疏学习的非优因素识别方法,实现对非优因素变量的准确识别.最后,通过重介质选煤过程实际生产数据和田纳西·伊斯曼(Tennessee Eastman, TE)过程数据验证了该方法的有效性. 展开更多
关键词 复杂工业过程 运行状态评价 静-动态特性协同 慢特征分析 稀疏学习
下载PDF
基于实例与目标相关性的多目标稀疏回归算法
5
作者 何杜博 孙胜祥 《控制与决策》 EI CSCD 北大核心 2024年第5期1478-1486,共9页
针对传统多目标回归算法无法处理输入与多输出间的非线性关系,且忽视了数据点在输入与输出之间的结构信息,导致算法泛化性能受限、缺乏稳健性等问题,提出一种基于实例与目标相关性的多目标稀疏回归(multitarget sparse regression with ... 针对传统多目标回归算法无法处理输入与多输出间的非线性关系,且忽视了数据点在输入与输出之间的结构信息,导致算法泛化性能受限、缺乏稳健性等问题,提出一种基于实例与目标相关性的多目标稀疏回归(multitarget sparse regression with instances and targets correlations, MTR-ITC)算法.首先,通过嵌入潜变量空间来对复杂的输入与输出以及输出间的关联结构解耦,并利用核技巧和稀疏回归学习输入输出间的非线性关系和输出间的相关结构;然后,引入流形正则化项探索不同实例在输入与输出变量间的相关性,确保模型输出与真实结果在局部和全局结构的一致性,以提升模型泛化性能;最后,提出一种交替优化算法来对目标函数进行求解,使其能快速收敛至全局最优.在基准测试数据集上的实验表明,所提算法在不同MTR数据集上均具有较好的测试性能. 展开更多
关键词 多目标回归 稀疏学习 流形学习 交替优化算法 核方法 实例相关性
原文传递
基于稀疏自适应学习的台区用户拓扑结构校验 被引量:6
6
作者 冯振宇 沈浚 +2 位作者 汪东耀 刘英 温桂平 《电测与仪表》 北大核心 2020年第7期29-34,共6页
针对低压台区拓扑结构人工校验成本高且准确性不足的问题,提出了基于稀疏自适应学习的台区用户拓扑结构校验方法。基于用电信息系统采集的用电量数据,构建了参数化台区用电量模型,提出了稀疏自适应学习方法自动估计出模型参数。通过阈... 针对低压台区拓扑结构人工校验成本高且准确性不足的问题,提出了基于稀疏自适应学习的台区用户拓扑结构校验方法。基于用电信息系统采集的用电量数据,构建了参数化台区用电量模型,提出了稀疏自适应学习方法自动估计出模型参数。通过阈值检验识别出台户拓扑结构统计错误的用户。采用浙江省海宁地区的用电量数据对该方法的性能进行分析。实验结果表明,该方法具有较好的识别率。在模拟场景中,可以达到100%的查全率和查准率;在真实场景中,可以达到84.8%的查准率和90.7%的查全率。 展开更多
关键词 拓扑结构校验 稀疏学习 低压台区 用电量 参数估计 最小均方误差
下载PDF
一种高效的K值自适应的SA-KNN算法 被引量:6
7
作者 孙可 龚永红 邓振云 《计算机工程与科学》 CSCD 北大核心 2015年第10期1965-1970,共6页
传统的K近邻(KNN)分类算法在实际应用过程中存在一些缺陷:没有考虑去除噪声样本,也没有考虑到在样本数据空间变换过程中保持样本数据本身的流形学结构,并且没有使用样本间属性的相关性。为此,提出引入稀疏学习理论,利用训练样本重构测... 传统的K近邻(KNN)分类算法在实际应用过程中存在一些缺陷:没有考虑去除噪声样本,也没有考虑到在样本数据空间变换过程中保持样本数据本身的流形学结构,并且没有使用样本间属性的相关性。为此,提出引入稀疏学习理论,利用训练样本重构测试样本的方法,重构过程使用了样本间的相关性,也用到局部保持投影LPP保持数据结构不变,同时引入l2,1范数用于去除噪声样本的方法来寻找投影变换矩阵W,进而利用W确定KNN算法中K值的SA-KNN算法。在UCI数据集上的仿真实验结果表明,该方法比传统的KNN分类算法和Entropy-KNN算法有更高的分类准确度。 展开更多
关键词 K近邻分类 相关性 去除噪声样本 局部保持投影 稀疏学习
下载PDF
基于交互意见和地位理论的符号网络链接预测模型 被引量:6
8
作者 王鑫 王英 左万利 《计算机研究与发展》 EI CSCD 北大核心 2016年第4期764-775,共12页
随着社会网络的普遍和流行,社会网络为符号网络(signed network)的深入研究提出了更多的全新问题,其中链接预测是符号网络研究的核心问题之一.交互意见和地位理论能够较好地解释符号网络中链接关系的构建和链接的符号属性,二者作为链接... 随着社会网络的普遍和流行,社会网络为符号网络(signed network)的深入研究提出了更多的全新问题,其中链接预测是符号网络研究的核心问题之一.交互意见和地位理论能够较好地解释符号网络中链接关系的构建和链接的符号属性,二者作为链接构建的诱因为提高链接预测的质量提供了理论基础.因此,通过研究交互意见和地位理论与链接关系的强相关性,构建符号网络链接预测模型.首先,利用交互意见增强待分解矩阵的可靠度,弥补由地位理论的对称性所带来的局限性;然后,在稀疏学习矩阵分解模型基础上,将交互意见建模为增强可靠度因子,同时将地位理论建模为稀疏学习模型的正则化项;最后,构建基于交互意见和地位理论的符号网络链接预测模型MF-SI.实验结果表明相比于其他基本方法,MF-SI模型获得了较好的预测质量,说明集成交互意见和地位理论能够较好地实现符号网络链接预测问题. 展开更多
关键词 符号网络 链接预测 稀疏学习 交互意见 地位理论
下载PDF
基于稀疏学习的电力大数据压缩与高精度重建
9
作者 苏良立 王敏楠 +2 位作者 余仰淇 肖娅晨 肖戈 《电子设计工程》 2024年第14期68-72,共5页
电网的运行需要大量电力大数据的支持,为了降低传输工作量,设计基于稀疏学习的电力大数据压缩与高精度重建方法。采用最优复杂度模型处理电力大数据的缺失值,通过基于残差学习方法的DnCNN去噪模型,对大数据去噪。根据向量主成分分析方法... 电网的运行需要大量电力大数据的支持,为了降低传输工作量,设计基于稀疏学习的电力大数据压缩与高精度重建方法。采用最优复杂度模型处理电力大数据的缺失值,通过基于残差学习方法的DnCNN去噪模型,对大数据去噪。根据向量主成分分析方法,对电力大数据进行压缩处理。基于稀疏学习构建大数据重建网络模型,实现电力大数据的重建。实验测试结果表明,设计方法的数据压缩比最高达到0.986,综合矢量误差整体低于0.3%,归一化均方误差整体低于0.8%。 展开更多
关键词 稀疏学习 电力大数据 最优复杂度模型 向量主成分分析
下载PDF
车辆图像稀疏特征表示及其监控视频应用 被引量:5
10
作者 陈湘军 阮雅端 +1 位作者 陈启美 叶飞跃 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第B06期81-86,共6页
针对传统车辆图像特征在复杂场景下响鲁棒性和泛化能力低的问题,提出了车辆图像稀疏特征表示方法,并实现了基于稀疏特征的车辆图像支持向量机线性分类器,构建了基于稀疏特征和背景建模的监控车辆分类识别应用框架.与传统方法相比,该方... 针对传统车辆图像特征在复杂场景下响鲁棒性和泛化能力低的问题,提出了车辆图像稀疏特征表示方法,并实现了基于稀疏特征的车辆图像支持向量机线性分类器,构建了基于稀疏特征和背景建模的监控车辆分类识别应用框架.与传统方法相比,该方法将车辆图像表示成字典集的低维稀疏线性组合,提高了特征表示泛化能力,能适应实时性监控视频分析的需求.实验结果表明,基于稀疏特征的车辆识别准确率比传统方法明显提升,并在低分辨率、阴影、遮挡等复杂场景下有较好的鲁棒性. 展开更多
关键词 特征表示 稀疏学习 车辆分类与识别 鲁棒性与泛化性 智能交通系统
原文传递
基于稀疏化神经网络的浮选泡沫图像特征选择 被引量:5
11
作者 朱建勇 黄鑫 +1 位作者 杨辉 聂飞平 《控制与决策》 EI CSCD 北大核心 2021年第7期1627-1636,共10页
针对泡沫特征复杂繁多不利于建模控制的问题,提出一种基于稀疏化神经网络的泡沫图像特征选择方法.相较于大部分稀疏模型以线性回归模型作为损失函数的情况,选择以更为贴近实际工业过程非线性特点的神经网络模型作为损失函数,并加入L2,1... 针对泡沫特征复杂繁多不利于建模控制的问题,提出一种基于稀疏化神经网络的泡沫图像特征选择方法.相较于大部分稀疏模型以线性回归模型作为损失函数的情况,选择以更为贴近实际工业过程非线性特点的神经网络模型作为损失函数,并加入L2,1范数约束以起到特征选择的效果;此方法根据泡沫特征建立解决矿物品位回归问题的特征选择方法,并采用近点梯度法计算最优解,通过对第1层权值的综合排序得到特征选择子集;最后,利用支持向量机测试输入样本不同特征组合效果,对比各特征子集得到浮选过程最优特征组合.工业数据仿真结果表明,所提出方法可以有效地实现泡沫图像维数约简. 展开更多
关键词 泡沫浮选 稀疏模型 神经网络 特征选择 维度约简
原文传递
基于L_(2,0)范数约束和冗余度学习的无监督特征选择算法
12
作者 蒙莹莹 李巧艳 +1 位作者 杨小飞 袁林 《郑州大学学报(理学版)》 CAS 北大核心 2023年第5期81-88,共8页
为了更好地消除特征间的冗余,结合稀疏学习,提出一种融合特征冗余度学习的稀疏无监督特征选择算法。首先,该算法利用L1范数度量投影数据点与聚类标签之间的损失,引入辅助变量将聚类标签的编码矩阵的正交性与非负性分离,确保编码矩阵是... 为了更好地消除特征间的冗余,结合稀疏学习,提出一种融合特征冗余度学习的稀疏无监督特征选择算法。首先,该算法利用L1范数度量投影数据点与聚类标签之间的损失,引入辅助变量将聚类标签的编码矩阵的正交性与非负性分离,确保编码矩阵是非负的且更接近理想的标签;其次,利用余弦相似度方法构造特征的冗余度矩阵,并将其作为正则项约束来学习投影矩阵;最后,通过L_(2,0)范数约束投影矩阵,可以恰好得到它的k个非零行,进而选出原始数据的k个特征。由此得到基于L_(2,0)范数约束和特征冗余度学习的稀疏无监督特征选择模型。所提算法在12个公开数据集上与10个相关算法进行比较,实验结果表明该算法在多数情况下可以选出更具判别性的特征。 展开更多
关键词 特征选择 稀疏学习 特征冗余 矩阵分解 无监督学习
下载PDF
基于稀疏学习的行人重识别算法 被引量:4
13
作者 张文文 王洪元 +2 位作者 万建武 孙金玉 丁宗元 《数据采集与处理》 CSCD 北大核心 2018年第5期855-864,共10页
行人重识别问题是计算机视觉的重要研究内容之一,旨在将多个非重叠相机中的目标行人准确加以识别。当将某摄像机中的行人图像视为目标行人在该摄像机视图上的一种表示时,行人重识别可被认为是一种多视图学习问题。在此基础上提出的基于... 行人重识别问题是计算机视觉的重要研究内容之一,旨在将多个非重叠相机中的目标行人准确加以识别。当将某摄像机中的行人图像视为目标行人在该摄像机视图上的一种表示时,行人重识别可被认为是一种多视图学习问题。在此基础上提出的基于典型相关分析的行人重识别算法仅是一种线性降维算法,很难从复杂的重识别系统(如目标行人图像受低分辨率、光照及行人姿态变化等因素影响)中提取有效的高层语义信息,用于行人重识别。为此,本文提出了一种基于稀疏学习的行人重识别算法(Sparsity learning based person re-identification,SLR)。SLR首先通过稀疏学习获取目标行人在每一相机视图上的高层语义表示,然后将高层特征映射到一个公共的隐空间,使不同视图间的特征距离可比较。SLR算法的优点在于通过学习鲁棒的行人图像特征表示,能够获得更具判别性的公共隐空间,以提高算法的行人重识别性能。在VIPeR、CUHK数据集上的实验结果表明了本文算法的有效性。 展开更多
关键词 计算机视觉 行人重识别 稀疏学习 多视图学习
下载PDF
基于稀疏学习的微电网负载建模 被引量:4
14
作者 平作为 何维 +1 位作者 李俊林 杨涛 《自动化学报》 EI CSCD 北大核心 2020年第9期1798-1808,共11页
微电网由负载、储能系统和分布式电源互联集成到能源系统中,微电网系统可以作为一个整体系统与电网并行运行或以孤岛模式运行.负载建模是微电网运行和管理中的一个基本问题.本文着重解决以下两个关键问题:1)协调负载模型结构的合理性和... 微电网由负载、储能系统和分布式电源互联集成到能源系统中,微电网系统可以作为一个整体系统与电网并行运行或以孤岛模式运行.负载建模是微电网运行和管理中的一个基本问题.本文着重解决以下两个关键问题:1)协调负载模型结构的合理性和简洁性;2)负载模型参数的校准.与常规负载建模方法不同,本文提出了一类数据驱动建模方法以同时实现负载模型结构选择和参数校准.具体地,该方法从量测数据中稀疏学习静态负载模型和动态负载模型,其关键方法分别来自于稀疏贝叶斯学习方法和交替方向方法,即从一组备选非线性字典函数中稀疏学习最主要的非线性项以平衡数据拟合度并实现模型学习.所提出的方法将机器学习与稀疏表示相结合,旨在对负载模型从物理角度提供机理解释并向配电网系统操作员提供有关负载的动态信息.在孤岛微电网测试系统中验证并评估了所提出的算法.研究测例表明所提出算法从量测数据中实现负载稀疏学习的合理性和对于噪声的鲁棒性. 展开更多
关键词 静态负载 动态负载 负载建模 微电网 机器学习 稀疏学习
下载PDF
稀疏局部保持投影 被引量:4
15
作者 郑忠龙 黄小巧 +1 位作者 贾泂 杨杰 《计算机学报》 EI CSCD 北大核心 2014年第9期2038-2046,共9页
LASSO(Least Absolute Shrinkage and Selection Operator)是1范数和2范数混合学习的一种理论框架,基于LASSO提出了局部保持投影的稀疏回归算法SpLPP及其广义的正则化形式RSpLPP,并从理论上证明了所提模型的收敛性及求解算法,给出了算... LASSO(Least Absolute Shrinkage and Selection Operator)是1范数和2范数混合学习的一种理论框架,基于LASSO提出了局部保持投影的稀疏回归算法SpLPP及其广义的正则化形式RSpLPP,并从理论上证明了所提模型的收敛性及求解算法,给出了算法的复杂性分析.所提算法同时具有特征选择、降维的特性,在有监督学习、无监督学习两种任务情况下,都可以应用该算法.在人工数据集和真实数据集上进行的大量仿真实验,取得了较好的结果,证明了所提算法的有效性. 展开更多
关键词 稀疏学习 局部保持投影 流行学习 正则化
下载PDF
概率图模型的稀疏化学习 被引量:4
16
作者 刘建伟 崔立鹏 罗雄麟 《计算机学报》 EI CSCD 北大核心 2016年第8期1597-1611,共15页
利用稀疏化学习得到的概率图模型结构简单却保留了原始概率图模型中重要的结构信息,且能同时实现结构和参数学习,因此近几年来概率图模型的稀疏化学习一直是研究的热点,其中概率图模型的第一种稀疏化学习方法是图套索.文中总结了概率图... 利用稀疏化学习得到的概率图模型结构简单却保留了原始概率图模型中重要的结构信息,且能同时实现结构和参数学习,因此近几年来概率图模型的稀疏化学习一直是研究的热点,其中概率图模型的第一种稀疏化学习方法是图套索.文中总结了概率图模型的稀疏化学习方法,包括概率图模型的L1范数罚稀疏化学习、概率图模型的无偏稀疏化学习、概率图模型的结构稀疏化学习和概率图模型的多任务稀疏化学习.最后,文中还指出了概率图模型的稀疏化学习未来有意义的研究方向. 展开更多
关键词 概率图模型 稀疏化学习 结构和参数 图套索 精度矩阵 机器学习
下载PDF
基于自步学习多元回归分析 被引量:3
17
作者 甘江璋 钟智 +2 位作者 余浩 雷聪 赵树之 《计算机工程与设计》 北大核心 2018年第12期3835-3839,3852,共6页
针对现有多元回归模型没有充分考虑离群训练样本的影响而导致模型泛化能力差的问题,提出一种结合自步学习和稀疏属性选择的多元回归分析方法。通过自步学习理论优先选择高置信度的样本来训练初始属性选择模型,依次加入次高置信度的训练... 针对现有多元回归模型没有充分考虑离群训练样本的影响而导致模型泛化能力差的问题,提出一种结合自步学习和稀疏属性选择的多元回归分析方法。通过自步学习理论优先选择高置信度的样本来训练初始属性选择模型,依次加入次高置信度的训练样本增加初始选择模型的泛化能力,直至增加的训练样本使泛化能力减弱或者所有训练样本被用完。用选择的属性进行多元回归分析,提高算法效率和效果。6个公开的数据集上的实验结果表明,该算法在回归分析中得到的结果优于对比算法。 展开更多
关键词 自步学习 属性选择 稀疏学习 回归分析 有监督学习
下载PDF
基于稀疏系数矩阵重构的多标记特征选择 被引量:2
18
作者 李永豪 胡亮 高万夫 《计算机学报》 EI CAS CSCD 北大核心 2022年第9期1827-1841,共15页
处理复杂的多标记数据对于特征选择而言是一项挑战性任务.然而,现存的多标记特征选择方法存在三个问题未解决.首先,现有的多标记特征选择方法利用样例层流形正则化项保持样例的相似性结构或借助标签关联来指导特征选择,但两者对于特征... 处理复杂的多标记数据对于特征选择而言是一项挑战性任务.然而,现存的多标记特征选择方法存在三个问题未解决.首先,现有的多标记特征选择方法利用样例层流形正则化项保持样例的相似性结构或借助标签关联来指导特征选择,但两者对于特征选择的指导存在互补关系.其次,早期方法基于样例相似性所构造的近邻矩阵来探索标签关联,却忽略了成对标签本身的关联性.最后,早期方法整合多个未知变量,导致目标函数的求解变得困难.为解决上述问题,本文基于最小二乘回归模型构建经验损失函数,然后在目标函数中引入标签正则化项探索标签之间的关联,同时利用特征矩阵与重构稀疏系数矩阵的乘积表示预测标签并保留数据本身的局部几何结构.上述各项被整合在一个联合学习框架内.针对该学习框架,一套证明可收敛的优化方案被设计.在13个真实的多标记基准数据集上进行实验,实验结果验证了所提方法的有效性. 展开更多
关键词 特征选择 多标记学习 流形学习 稀疏化学习 分类
下载PDF
一种单时相高分辨率遥感影像时空融合算法 被引量:4
19
作者 李大成 韩启金 赵涌泉 《计算机工程与应用》 CSCD 北大核心 2018年第5期191-199,共9页
受制于传感器本身材料及卫星轨道参数,空间分辨率和时间分辨率是卫星遥感传感器固有的性能指标且难以兼备,使得高空间分辨率卫星的多时相数据合成问题至今仍是制约其广泛应用的关键问题之一。由于可有效综合空间-光谱-时间维的影像信息... 受制于传感器本身材料及卫星轨道参数,空间分辨率和时间分辨率是卫星遥感传感器固有的性能指标且难以兼备,使得高空间分辨率卫星的多时相数据合成问题至今仍是制约其广泛应用的关键问题之一。由于可有效综合空间-光谱-时间维的影像信息,多源遥感影像时空融合技术在近十年间得到迅速发展并已成为解决多时相数据合成问题的有力手段,其中基于学习的时空融合策略在合成精度上具有显著优势且应用潜力较高,但因其对字典训练过程的依赖程度较高而在融合过程中存在一定的不确定性。为提高基于学习的时空融合策略的预测精度、运算效率及鲁棒性,通过综合基于辐射归化的大气校正方法、基于误差约束的数据标准化转换机制、自适应多层递进融合策略以及高效的稀疏求解函数库,设计了一种适用于单时相高分辨率遥感影像的时空融合框架,并以国产高分二号卫星与Landsat-8卫星遥感影像为实验数据对该方法进行充分的对比性分析。实验结果表明,该融合框架不仅提升了运算效率,还在影像保真度、纹理特征描述以及光谱一致性等方面比当前的单数据对融合方法具有更好的重构质量。 展开更多
关键词 时空融合 稀疏学习 单时相 高分二号 Landsat-8
下载PDF
基于自适应标签和稀疏学习相关滤波的红外目标跟踪算法研究 被引量:3
20
作者 黄月平 李小锋 +2 位作者 卢瑞涛 齐乃新 张胜修 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第12期199-208,共10页
针对背景杂乱、遮挡、热交叉以及目标形变等复杂跟踪场景下目标跟踪算法出现性能严重退化问题,提出一种基于自适应标签和稀疏学习相关滤波的实时红外单目标跟踪算法。首先,根据目标响应情况自适应地构造样本标签,通过自适应标签训练提... 针对背景杂乱、遮挡、热交叉以及目标形变等复杂跟踪场景下目标跟踪算法出现性能严重退化问题,提出一种基于自适应标签和稀疏学习相关滤波的实时红外单目标跟踪算法。首先,根据目标响应情况自适应地构造样本标签,通过自适应标签训练提升相关滤波器的分类能力,抑制干扰区域对跟踪模型的污染。其次,加入稀疏学习策略,通过目标响应L1范数抑制复杂跟踪场景下目标响应多峰分布,提高跟踪算法的鲁棒性;与基线算法相比,该算法精度和AUC分别提升了19.3%和39.8%。在数据集GTOT、RGBT234和VOT-2016TIR上的实验结果表明,该算法对上述复杂跟踪场景具有良好的应对能力,运行速度超过35 fps,综合性能优于对比跟踪算法。 展开更多
关键词 计算机视觉 红外目标跟踪 相关滤波 稀疏学习
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部