期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
稀疏标签传播:一种鲁棒的领域适应学习方法 被引量:7
1
作者 陶剑文 Fu-Lai CHUNG +1 位作者 王士同 姚奇富 《软件学报》 EI CSCD 北大核心 2015年第5期977-1000,共24页
稀疏表示因其所具有的鲁棒性,在模式分类领域逐渐得到关注.研究了一种基于稀疏保留模型的新颖领域适应学习方法,并提出一种鲁棒的稀疏标签传播领域适应学习(sparse label propagation domain adaptation learning,简称SLPDAL)算法.SLPDA... 稀疏表示因其所具有的鲁棒性,在模式分类领域逐渐得到关注.研究了一种基于稀疏保留模型的新颖领域适应学习方法,并提出一种鲁棒的稀疏标签传播领域适应学习(sparse label propagation domain adaptation learning,简称SLPDAL)算法.SLPDAL通过将目标领域数据进行稀疏重构,以实现源领域数据标签向目标领域平滑传播.具体来讲,SLPDAL算法分为3步:首先,基于领域间数据分布均值差最小化准则寻求一个优化的核空间,并将领域数据嵌入到该核空间;然后,在该嵌入核空间,基于l1-范最小化准则计算各领域数据的核稀疏重构系数;最后,通过保留领域数据间核稀疏重构系数约束,实现源领域数据标签向目标领域的传播.最后,将SLPDAL算法推广到多核学习框架,提出一个SLPDAL多核学习模型.在鲁棒人脸识别、视频概念检测和文本分类等领域适应学习任务上进行比较实验,所提出的方法取得了优于或可比较的学习性能. 展开更多
关键词 领域适应学习 稀疏表示 标签传播 最大均值差 多核学习
下载PDF
新的稀疏支持向量回归机算法及实验研究 被引量:4
2
作者 陈晓峰 王士同 +1 位作者 曹苏群 马培勇 《计算机工程与应用》 CSCD 北大核心 2008年第36期24-28,共5页
支持向量回归机是一种解决回归问题的重要方法,其预测速度与支持向量的稀疏性成正比。为了改进支持向量回归机的稀疏性,提出了一种直接稀疏支持向量回归算法DSKR(Direct Sparse Kernel Support Vector Regression),用于构造稀疏性支持... 支持向量回归机是一种解决回归问题的重要方法,其预测速度与支持向量的稀疏性成正比。为了改进支持向量回归机的稀疏性,提出了一种直接稀疏支持向量回归算法DSKR(Direct Sparse Kernel Support Vector Regression),用于构造稀疏性支持向量回归机。DSKR算法对ε-SVR(ε-Support Vector Regression)增加一个非凸约束,通过迭代优化的方式,得到稀疏性好的支持向量回归机。在人工数据集和真实世界数据集上研究DSKR算法的性能,实验结果表明,DSKR算法可以通过调控支持向量的数目,提高支持向量回归机的稀疏性,且具有较好的鲁棒性。 展开更多
关键词 支持向量回归机 核方法 稀疏核学习
下载PDF
基于随机特征映射的四层多核学习方法 被引量:3
3
作者 杨悦 王士同 《计算机应用》 CSCD 北大核心 2022年第1期16-25,共10页
针对单核网络模型的核函数选择无理论依据以及基于随机特征映射的四层神经网络(FRMFNN)节点规模过大的问题,提出了一种基于随机特征映射的四层多核学习神经网络(MK-FRMFNN)算法。首先,把原始输入特征通过特定的随机映射算法转化为随机... 针对单核网络模型的核函数选择无理论依据以及基于随机特征映射的四层神经网络(FRMFNN)节点规模过大的问题,提出了一种基于随机特征映射的四层多核学习神经网络(MK-FRMFNN)算法。首先,把原始输入特征通过特定的随机映射算法转化为随机映射特征;然后,经过不同的随机核映射生成多个基本核矩阵;最后,将基本核矩阵组成合成核矩阵,并通过输出权重连接到输出层。对原始特征进行随机映射的权重是根据任意连续采样概率分布随机生成的,不需要训练更新,且对输出层的权重使用岭回归伪逆算法进行快速求解,从而避免了反复迭代耗时的训练过程。MK-FRMFNN在基本核映射时引入了不同的随机权重矩阵,生成的合成核矩阵不仅可以综合各种核函数的优势,而且可以集合各种随机分布函数的特性,使数据在新的特征空间中获得更好的特征选择和表达效果。理论和实验分析表明,与宽度学习系统(BLS)及FRMFNN等单核模型相比,MK-FRMFNN模型的节点规模减小了2/3左右,且分类性能稳定;与主流的多种多核模型相比,MK-FRMFNN模型能够对大样本数据集进行学习,并且分类性能明显更优。 展开更多
关键词 随机特征映射 稀疏自动编码器 多核学习 岭回归 正则化
下载PDF
基于多项式核的稀疏核学习单步预测控制算法及其应用 被引量:1
4
作者 刘毅 王海清 李平 《化工学报》 EI CAS CSCD 北大核心 2008年第10期2541-2545,共5页
提出一种基于稀疏核学习辨识模型的单步预测控制(sparse kernel learningone-step-ahead predictive control,SKL-OPC)框架,并推导了该框架下采用多项式核的一种控制算法。该算法在求取最优控制律时可将调节变量从目标函数分离出来,并... 提出一种基于稀疏核学习辨识模型的单步预测控制(sparse kernel learningone-step-ahead predictive control,SKL-OPC)框架,并推导了该框架下采用多项式核的一种控制算法。该算法在求取最优控制律时可将调节变量从目标函数分离出来,并最终转化为求解一奇数次代数方程根的问题。因此无需复杂的非线性优化技术,且克服了基于二次多项式核辨识模型不准确造成控制算法失效的缺点。在一非线性连续搅拌反应釜的控制研究表明了该方法的有效性和优越性。 展开更多
关键词 非线性过程控制 稀疏核学习 多项式核函数
下载PDF
基于多核学习卷积神经网络的稀疏数据推荐 被引量:1
5
作者 霍雨佳 左欣 张虹 《计算机工程与设计》 北大核心 2021年第2期489-496,共8页
针对当前稀疏数据推荐准确率低的问题,提出一种基于多核学习卷积神经网络的稀疏数据推荐算法。将项目的辅助信息送入卷积神经网络学习特征,将向量在可再生核希尔伯特空间组合,利用多核学习技术增强卷积神经网络的特征学习能力;基于学习... 针对当前稀疏数据推荐准确率低的问题,提出一种基于多核学习卷积神经网络的稀疏数据推荐算法。将项目的辅助信息送入卷积神经网络学习特征,将向量在可再生核希尔伯特空间组合,利用多核学习技术增强卷积神经网络的特征学习能力;基于学习的卷积特征集初始化非负矩阵模型,通过非负矩阵模型实现对缺失评分的预测。实验结果表明,该算法有效提高了稀疏数据集的推荐性能,验证了多核学习卷积神经网络的有效性。 展开更多
关键词 稀疏数据 推荐系统 评分预测 卷积神经网络 多核学习 项目上下文
下载PDF
基于sparse group Lasso方法的脑功能超网络构建与特征融合分析 被引量:7
6
作者 李瑶 赵云芃 +3 位作者 李欣芸 刘志芬 陈俊杰 郭浩 《计算机应用》 CSCD 北大核心 2020年第1期62-70,共9页
功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题... 功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题,引入sparse group Lasso(sgLasso)方法进一步改善超网络的创建。首先,利用sgLasso方法进行超网络创建;然后,引入两组超网络特有的属性指标进行特征提取以及特征选择,这些指标分别是基于单一节点的聚类系数和基于一对节点的聚类系数;最后,将特征选择后得到的两组有显著差异的特征通过多核学习进行特征融合和分类。实验结果表明,所提方法经过多特征融合取得了87.88%的分类准确率。该结果表明为了改善脑功能超网络的创建,需要考虑到组信息,但不能逼迫使用整组信息,可以适当地对组结构进行扩展。 展开更多
关键词 超网络 sparse GROUP Lasso 基于一对节点的聚类系数 多核学习 抑郁症 机器学习
下载PDF
基于稀疏编码和多核学习的图像分类算法 被引量:6
7
作者 程东阳 蒋兴浩 孙锬锋 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第11期1789-1793,共5页
提出了一种基于稀疏编码和多核学习的图像分类算法.首先从图像中提取Dense-SIFT(Dense Scale-Invariant Feature Transform)和Dense-SURF(Dense Speeded Up Robust Feature)2种特征,使用稀疏编码对特征点进行处理,得到一系列高维向量,... 提出了一种基于稀疏编码和多核学习的图像分类算法.首先从图像中提取Dense-SIFT(Dense Scale-Invariant Feature Transform)和Dense-SURF(Dense Speeded Up Robust Feature)2种特征,使用稀疏编码对特征点进行处理,得到一系列高维向量,然后对这些高维向量应用max-pooling算法,将图像表示成单个向量.最后,使用改进的多核学习方法对这些向量进行分类,对于不同的特征,使用不同核的组合以达到最好的分类效果.实验结果表明,该算法作为词袋(BoW)模型的改进,能够提高分类准确率. 展开更多
关键词 稀疏编码 多核学习 特征融合
下载PDF
基于Boosting框架的非稀疏多核学习方法 被引量:2
8
作者 胡庆辉 李志远 《计算机应用研究》 CSCD 北大核心 2016年第11期3219-3222,3227,共5页
针对传统的分类器集成的每次迭代通常是将单个最优个体分类器集成到强分类器中,而其他可能有辅助作用的个体分类器被简单抛弃的问题,提出了一种基于Boosting框架的非稀疏多核学习方法 MKL-Boost。利用分类器集成学习的思想,每次迭代时,... 针对传统的分类器集成的每次迭代通常是将单个最优个体分类器集成到强分类器中,而其他可能有辅助作用的个体分类器被简单抛弃的问题,提出了一种基于Boosting框架的非稀疏多核学习方法 MKL-Boost。利用分类器集成学习的思想,每次迭代时,首先从训练集中选取一个训练子集,然后利用正则化非稀疏多核学习方法训练最优个体分类器,求得的个体分类器考虑了M个基本核的最优非稀疏线性凸组合,通过对核组合系数施加LP范数约束,一些好的核得以保留,从而保留了更多的有用特征信息,差的核将会被去掉,保证了有选择性的核融合,再将基于核组合的最优个体分类器集成到强分类器中。提出的算法既具有Boosting集成学习的优点,同时具有正则化非稀疏多核学习的优点,实验表明,相对于其他Boosting算法,MKL-Boost可以在较少的迭代次数内获得较高的分类精度。 展开更多
关键词 集成学习 非稀疏多核学习 弱分类器 基本核
下载PDF
基于堆栈稀疏自编码融合核极限学习机的近红外光谱药品鉴别 被引量:10
9
作者 张卫东 李灵巧 +4 位作者 胡锦泉 冯艳春 尹利辉 胡昌勤 杨辉华 《分析化学》 SCIE EI CAS CSCD 北大核心 2018年第9期1446-1454,共9页
提出一种基于堆栈稀疏自编码融合核极限学习机(Stacked sparse auto-encoders combine kernel extreme learning machine,SSAE-KELM)的近红外药品鉴别方法,通过引入核极限学习机代替SSAE的Softmax分类和BP微调阶段,减少了模型的训练步... 提出一种基于堆栈稀疏自编码融合核极限学习机(Stacked sparse auto-encoders combine kernel extreme learning machine,SSAE-KELM)的近红外药品鉴别方法,通过引入核极限学习机代替SSAE的Softmax分类和BP微调阶段,减少了模型的训练步骤、训练参数以及训练时间,提高了深度学习网络的实际应用能力,核函数的引入提高了模型的分类能力。其中,SSAE用于初始化整个网络模型,并且从输入数据中学习到有用的特征,KELM用于实现分类任务。研究了SSAE-KELM模型对不同厂商生产的同一包装形式(铝塑或非铝塑)药品鉴别的预测能力、稳定性及训练时间,以实现药品的二分类和多分类的无损鉴别。同时,与ELM、SSAE、BP、SVM及随机隐退深度信念网络(Dropout-DBN)进行对比。结果表明,无论是二分类还是多分类,SSAE-KELM不仅具有更优的分类能力和稳定性、还减少了训练时间。因此,SSAE-KELM是一种有效的光谱分类建模工具。 展开更多
关键词 稀疏自编码网络 核极限学习机 核函数 近红外光谱 药品鉴别
下载PDF
基于核字典学习的图像分类 被引量:1
10
作者 徐俊 李元祥 +1 位作者 Wei Xian 骆建华 《计算机应用研究》 CSCD 北大核心 2017年第12期3820-3824,共5页
航拍图像往往具有场景复杂、数据维度大的特点,对于该类图像的自动分类一直是研究的热点。针对航拍原始数据特征维度过高和数据线性不可分的问题,在字典学习和稀疏表示的基础上提出了一种结合核字典学习和线性鉴别分析的目标识别方法。... 航拍图像往往具有场景复杂、数据维度大的特点,对于该类图像的自动分类一直是研究的热点。针对航拍原始数据特征维度过高和数据线性不可分的问题,在字典学习和稀疏表示的基础上提出了一种结合核字典学习和线性鉴别分析的目标识别方法。首先学习核字典并通过核字典获取目标样本的稀疏表示,挖掘数据的内部结构;其次采用线性鉴别分析,加强稀疏表示的可分性;最后利用支持向量机对目标进行分类。实验结果表明,与传统基于子空间特征提取的算法和基于字典学习的算法相比,基于核字典学习与鉴别分析的算法分类性能优越。 展开更多
关键词 目标分类 稀疏表示 核字典学习 线性鉴别分析 支持向量机
下载PDF
基于增量稀疏核极限学习机的柴油机故障在线诊断 被引量:6
11
作者 刘敏 张英堂 +1 位作者 李志宁 范红波 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第2期217-224,共8页
为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的... 为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的原则实现样本前向稀疏与后向删减,在最佳阶数内对字典进行在线扩充与修剪,从而建立阶数有限且结构稀疏的诊断模型.针对模型核权重矩阵更新问题,提出了增样学习与改进减样学习算法对核权重矩阵进行在线递推求解,降低了计算复杂度,提高了模型在线更新速度.UCI标准数据与柴油机故障数据分类实验结果表明,与几类现有在线诊断算法相比,ISKELM在保证较高分类精度的同时,极大地提高了在线建模速度,更加快速准确地实现了柴油机故障在线诊断. 展开更多
关键词 增量稀疏核极限学习机 样本稀疏 瞬时信息测量 稀疏核函数字典 减样学习 在线诊断
下载PDF
基于稀疏自动编码器与FA-KELM的滚动轴承故障诊断 被引量:5
12
作者 敦泊森 柳晨曦 王奉涛 《噪声与振动控制》 CSCD 2018年第A02期678-682,共5页
提取滚动轴承有效的故障特征参数是轴承故障诊断重要的组成部分,为改善核极限学习机(Kernel Extreme Learning Machine,KELM)高维数据特征选取的问题,提出一种结合稀疏自动编码器(Sparse Auto-Encoder,SAE)与KELM的方法。首先,提取振动... 提取滚动轴承有效的故障特征参数是轴承故障诊断重要的组成部分,为改善核极限学习机(Kernel Extreme Learning Machine,KELM)高维数据特征选取的问题,提出一种结合稀疏自动编码器(Sparse Auto-Encoder,SAE)与KELM的方法。首先,提取振动信号的时域、频域和时频域特征构成高维特征向量;其次,采用多层SAE融合高维特征来消除特征的冗余性;最后,采用融合后的特征训练KELM,得到故障诊断模型。针对KELM对参数敏感的缺陷,采用萤火虫算法(IF)进行参数优化。为评估方法有效性,采用实验数据进行测试,并与传统KELM方法进行比较,结果显示该方法具有更好准确性和稳定性。 展开更多
关键词 振动与波 滚动轴承 稀疏自动编码器 核极限学习机 特征提取
下载PDF
基于SPCSE与WKELM的网络入侵检测方法研究 被引量:3
13
作者 肖耿毅 《计算机仿真》 北大核心 2022年第6期425-429,共5页
网络入侵检测系统是用于保护系统免受非法攻击的重要网络防御工具,网络入侵行为复杂的、冗长的特征严重影响网络入侵的检测效果。现提出一种基于稀疏主成分空间嵌入与加权核极限学习机的网络入侵检测方法。为了有效约简网络入侵数据的特... 网络入侵检测系统是用于保护系统免受非法攻击的重要网络防御工具,网络入侵行为复杂的、冗长的特征严重影响网络入侵的检测效果。现提出一种基于稀疏主成分空间嵌入与加权核极限学习机的网络入侵检测方法。为了有效约简网络入侵数据的特征,提出一种基于稀疏主成分的特征约简的降维算法,即稀疏主成分空间嵌入算法(SPCSE)。同时,为了改进极限学习机的检测效果,提出一种加权核极限学习机算法(WKELM),它采用核函数代替包含激活函数的加权极限学习机隐层随机特征映射,有利于提高算法的非线性处理能力和鲁棒性。仿真结果显示加权核极限学习机对于网络入侵的检测精度95%,极限学习机对于网络入侵的检测精度92%,而提出的网络入侵检测方法对于网络入侵的检测精度达到98.5%,表明提出的网络入侵检测方法对于网络入侵的检测结果优于传统极限学习机以及加权核极限学习机。 展开更多
关键词 稀疏主成分空间嵌入 加权核极限学习机 网络入侵检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部