期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于Hilbert边际谱和SAE-DNN的局部放电模式识别方法 被引量:9
1
作者 高佳程 朱永利 +2 位作者 郑艳艳 张科 刘帅 《电力系统自动化》 EI CSCD 北大核心 2019年第1期87-94,共8页
提出了一种基于Hilbert边际谱和稀疏自编码器(SAE)—深度神经网络(DNN)的局部放电(PD)信号的模式识别方法。首先,以变分模态分解(VMD)对PD信号进行分解,对所得各分量进行Hilbert变换构建相应的Hilbert边际谱。其次,以PD信号的Hilbert边... 提出了一种基于Hilbert边际谱和稀疏自编码器(SAE)—深度神经网络(DNN)的局部放电(PD)信号的模式识别方法。首先,以变分模态分解(VMD)对PD信号进行分解,对所得各分量进行Hilbert变换构建相应的Hilbert边际谱。其次,以PD信号的Hilbert边际谱为输入数据,利用SAE自动学习复杂数据的内在特征来提取简明的数据特征表达获得参数。再次,利用SAE的训练结果初始化DNN,再以大量训练样本进行分类器的训练。同时,为了加快SAE和DNN学习过程的收敛速度,以自适应步长的学习速率对网络进行调优,更新权值参数。最后,用训练好的DNN完成测试样本的PD类型的识别。此外,以基于BP神经网络和支持向量机的识别结果与文中结果进行比较。实验结果证明,所采用的识别方法具有更高的正确识别率。 展开更多
关键词 局部放电 模式识别 Hilbert边际谱 稀疏自编码器 深度神经网络
下载PDF
基于SAE-RF的三维UWB室内定位方法研究 被引量:6
2
作者 李世银 朱媛 +2 位作者 刘江 王晓明 阳媛 《传感器与微系统》 CSCD 北大核心 2021年第8期46-49,共4页
由于室内环境复杂多变,存在着严重的非视距(NLOS)和多径效应,利用传统的指纹定位技术会造成较大的定位误差。针对此问题,利用超宽带(UWB)信号测距信息准确、波动小的特点,将测距值作为指纹量,提出一种基于稀疏自编码器(SAE)与随机森林(... 由于室内环境复杂多变,存在着严重的非视距(NLOS)和多径效应,利用传统的指纹定位技术会造成较大的定位误差。针对此问题,利用超宽带(UWB)信号测距信息准确、波动小的特点,将测距值作为指纹量,提出一种基于稀疏自编码器(SAE)与随机森林(RF)相结合的三维室内定位方法。利用SAE提取出更具鲁棒性的特征值,将此特征值作为深度神经网络(DNN)回归网络的输入,得到目标点的估计定位坐标。针对环境变化导致的旧数据库无法匹配新采集指纹量的问题,利用测距值作为RF回归模型的输入对估计定位坐标进行定位误差修正。实验结果表明:提出的SAE-RF三维定位方法与其他指纹定位方法相比,更适合动态复杂的室内环境,定位精度更高。 展开更多
关键词 指纹定位 稀疏自编码器 随机森林 超宽带
下载PDF
基于MCSA和Fisher-SAE的RV减速器故障特征提取研究 被引量:5
3
作者 张兹勤 王贵勇 刘韬 《机电工程》 CAS 北大核心 2022年第7期903-910,共8页
针对RV减速器实际监测中振动传感器的安装空间和信号采集容易受到限制和干扰等问题,提出了一种基于电机电流信号分析,稀疏自编码和Fisher准则相结合的RV减速器故障特征提取方法。首先,将采集的驱动电机电流数据转换到频域,研究了不同超... 针对RV减速器实际监测中振动传感器的安装空间和信号采集容易受到限制和干扰等问题,提出了一种基于电机电流信号分析,稀疏自编码和Fisher准则相结合的RV减速器故障特征提取方法。首先,将采集的驱动电机电流数据转换到频域,研究了不同超参数对稀疏自编码的特征提取能力的影响,利用优化参数后的稀疏自编码对频域信号自动提取故障特征;然后,利用Fisher准则对提取的特征的判别能力进行了降序排名,取排名前n个特征,得到了最优故障特征集;最后,结合SoftMax分类层,实现了对RV减速器的故障诊断;搭建了RV减速器故障实验台,采集了电机电流数据,对基于Fisher-SAE的方法进行了验证,并将其与其他典型机器学习故障诊断方法进行了对比。研究结果表明:该方法能够从RV减速器电机电流信号中提取出故障特征,并选择最有效的故障特征集,解决了振动信号的局限性以及运用电流信号进行故障诊断难以提取有效特征的问题;相比于其他典型机器学习故障诊断方法,该方法的诊断准确率提高了10%~20%,具有更好的诊断效率和准确性。 展开更多
关键词 齿轮减速器 故障诊断 故障特征提取 电机电流信号分析 稀疏自编码 FISHER准则 深度学习
下载PDF
基于PSO-SAE神经网络的城市燃气管道剩余寿命预测 被引量:3
4
作者 陈晓冬 《中国特种设备安全》 2022年第10期13-17,共5页
城市燃气管道由于长时间受到温度、压力、含水量等环境因素的影响,管材极易腐蚀、老化,无法到达设计寿命。针对这一问题,本文提出了一种PSO-SAE算法,利用优化算法自适应调整SAE网络中的超参数,实现对城市燃气管道的剩余寿命这一保障管... 城市燃气管道由于长时间受到温度、压力、含水量等环境因素的影响,管材极易腐蚀、老化,无法到达设计寿命。针对这一问题,本文提出了一种PSO-SAE算法,利用优化算法自适应调整SAE网络中的超参数,实现对城市燃气管道的剩余寿命这一保障管材安全使用的关键指标做出准确预测,并通过实验验证该方法的有效性和可行性,对燃气企业的安全生产管理具有积极的参考意义。 展开更多
关键词 粒子群优化算法(PSO) 稀疏自编码网络(sae) 城市燃气管道 寿命预测
下载PDF
奇异值分解和稀疏自编码器的轴承故障诊断 被引量:15
5
作者 曹浩 陈里里 +1 位作者 司吉兵 任君兰 《计算机工程与应用》 CSCD 北大核心 2019年第20期257-262,270,共7页
针对滚动轴承故障特征提取和分类需要进行有监督训练才能实现等问题,提出了一种基于奇异值分解(SVD)和时域统计特征分析并结合堆栈稀疏自编码器(SAE)以及Softmax 分类器实现滚动轴承故障诊断方法。该方法利用Hankle 矩阵对原始数据进行... 针对滚动轴承故障特征提取和分类需要进行有监督训练才能实现等问题,提出了一种基于奇异值分解(SVD)和时域统计特征分析并结合堆栈稀疏自编码器(SAE)以及Softmax 分类器实现滚动轴承故障诊断方法。该方法利用Hankle 矩阵对原始数据进行矩阵重构,利用奇异值分解和时域分析对重构后的故障信号进行特征预提取,融合两种特征并输入到堆栈稀疏自编码器中进行特征优化,将优化后的特征输入到Softmax 分类器中进行分类识别。实验结果表明,3 种工况下10 类故障数据的识别准确率均在96%左右,且高于文中其他方法,因此该方法能有效地进行滚动轴承复杂信号的特征预处理以及分类。 展开更多
关键词 滚动轴承故障 奇异值分解(SVD) 时域分析 堆栈稀疏自编码器(sae)
下载PDF
栈式稀疏自编码网络的多时相全极化SAR散射特征降维 被引量:6
6
作者 李恒辉 郭交 +2 位作者 韩文霆 刘艳阳 宁纪锋 《遥感学报》 EI CSCD 北大核心 2020年第11期1379-1391,共13页
利用极化合成孔径雷达(PolSAR)能够实现地物的识别和分类,而多时相全极化SAR可以获取地物更多的散射特征,提升地物识别精度,但高维散射特征的引入会带来严重的维数灾难问题。为了实现对高维散射特征的有效降维,本文提出一种基于栈式稀... 利用极化合成孔径雷达(PolSAR)能够实现地物的识别和分类,而多时相全极化SAR可以获取地物更多的散射特征,提升地物识别精度,但高维散射特征的引入会带来严重的维数灾难问题。为了实现对高维散射特征的有效降维,本文提出一种基于栈式稀疏自编码网络S-SAE(Stacked Sparse AutoEncoder)的多时相PolSAR散射特征降维方法。该方法首先对PolSAR数据进行极化目标分解以获取高维散射特征;然后使用S-SAE对获取的多维特征进行降维处理,其中S-SAE降维方法首先采用无监督训练方式进行逐层贪婪训练;再结合Sigmod分类器,利用监督训练的方式对S-SAE进行参数优化,实现高维特征的有效降维;最后以降维后的特征作为支持向量机(SVM)和卷积神经网络(CNN)分类器的输入,实现地物分类。通过仿真和实测的两组多时相Sentinel-1数据处理结果表明,双隐层的S-SAE降维方法在各分类器上均取得最优的降维效果;对比各降维方法在SVM分类器上的分类精度,S-SAE较于局部线性嵌入(LLE)与主成分分析(PCA)降维方法,总体分类精度分别至少提升了9%和14%;在CNN分类器上,S-SAE较于LLE与PCA降维方法,总体分类精度分别至少提升了7%和9%。 展开更多
关键词 特征降维 作物分类 极化合成孔径雷达 多时相 栈式稀疏自编码网络 卷积神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部