The disturbance torque of aerostatic bearings is in the same order of the reaction wheel, which causes difficulty in evaluation of the designed attitude control strategy of a nano-satellite based on the aerostatic bea...The disturbance torque of aerostatic bearings is in the same order of the reaction wheel, which causes difficulty in evaluation of the designed attitude control strategy of a nano-satellite based on the aerostatic bearing. Two approaches are proposed to model the disturbance torque. Firstly, the gravity induced moment,the vortex torque, and the damping moment are modeled separately. However, the vortex torque and the damping moment are coupled with each other as both of them are caused by the viscosity. In the second approach, the coupling effect is considered. A nano-satellite is constructed based on aerostatic bearing. The time history of the free rotation rate from an initial speed is measured by the gyro, which is further used to calculate the rotation angle and acceleration. The static vortex torque is measured via the removable micro-torque measurement system. Based on these data, the model parameters are identified and modeling errors are presented. Results show that the second model is more precise.The root mean squire error is less than 0.5×10^(-4) N·m and the relative error of the static vortex torque is 0.16%.展开更多
Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturb...Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturbance torque of a satellite in outer space.However,at the beginning of the experiment,the disturbance torque caused by the misalignment between the center of gravity of the simulator and the center of rotation of the bearing is the most important factor restricting the use of the space three-axis simulator.In order to solve this problem,it is necessary to set the balance adjustment system on the simulator to compensate the disturbance torque caused by the eccentricity.The paper aims to discuss these issues.Design/methodology/approach–In this paper,a study of L1 adaptive automatic balancing control method for micro satellite with motor without other actuators is proposed.L1 adaptive control algorithm adds the low-pass filter to the control law,which in a certain sense to reduce the high-frequency signal and speed up the response time of the controlled system.At the same time,by estimating the adaptive parameter uncertainty in object,the output error of the state predictor and the controlled object can be stabilized under Lyapunov condition,and the robustness of the system is also improved.The automatic balancing method of PID is also studied in this paper.Findings–Through this automatic balancing mechanism,the gravity disturbance torque can be effectively reduced down to 10−6 Nm,and the automatic balancing time can be controlled within 7 s.Originality/value–This paper introduces an automatic balancing mechanism.The experimental results show that the mechanism can greatly improve the convergence speed while guaranteeing the control accuracy,and ensuring the feasibility of the large angle maneuver of spacecraft three-axis simulator.展开更多
基金supported by the National Natural Science Foundation of China(1167209351705109)+2 种基金the Special Foundation of Heilongjiang Postdoctoral Science(LBH-TZ1609)the Open Fund of National Defense Key Discipline Laboratory of Micro-Spacecraft Technology(HIT.KLOF.MST.201507)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.201622)
文摘The disturbance torque of aerostatic bearings is in the same order of the reaction wheel, which causes difficulty in evaluation of the designed attitude control strategy of a nano-satellite based on the aerostatic bearing. Two approaches are proposed to model the disturbance torque. Firstly, the gravity induced moment,the vortex torque, and the damping moment are modeled separately. However, the vortex torque and the damping moment are coupled with each other as both of them are caused by the viscosity. In the second approach, the coupling effect is considered. A nano-satellite is constructed based on aerostatic bearing. The time history of the free rotation rate from an initial speed is measured by the gyro, which is further used to calculate the rotation angle and acceleration. The static vortex torque is measured via the removable micro-torque measurement system. Based on these data, the model parameters are identified and modeling errors are presented. Results show that the second model is more precise.The root mean squire error is less than 0.5×10^(-4) N·m and the relative error of the static vortex torque is 0.16%.
基金This work was partially supported by the National Natural Science Foundation of China(Nos 61673208,61374115)the National Key Research and Development Plan(No.2016YFB0500901).
文摘Purpose–The three-axis simulator relies on the air film between the air bearing and the bearing seat to achieve weightlessness and the frictionless motion condition,which is essential for simulating the micro-disturbance torque of a satellite in outer space.However,at the beginning of the experiment,the disturbance torque caused by the misalignment between the center of gravity of the simulator and the center of rotation of the bearing is the most important factor restricting the use of the space three-axis simulator.In order to solve this problem,it is necessary to set the balance adjustment system on the simulator to compensate the disturbance torque caused by the eccentricity.The paper aims to discuss these issues.Design/methodology/approach–In this paper,a study of L1 adaptive automatic balancing control method for micro satellite with motor without other actuators is proposed.L1 adaptive control algorithm adds the low-pass filter to the control law,which in a certain sense to reduce the high-frequency signal and speed up the response time of the controlled system.At the same time,by estimating the adaptive parameter uncertainty in object,the output error of the state predictor and the controlled object can be stabilized under Lyapunov condition,and the robustness of the system is also improved.The automatic balancing method of PID is also studied in this paper.Findings–Through this automatic balancing mechanism,the gravity disturbance torque can be effectively reduced down to 10−6 Nm,and the automatic balancing time can be controlled within 7 s.Originality/value–This paper introduces an automatic balancing mechanism.The experimental results show that the mechanism can greatly improve the convergence speed while guaranteeing the control accuracy,and ensuring the feasibility of the large angle maneuver of spacecraft three-axis simulator.